انفجارات أشعة غاما ( GRB أو Gamma-ray Burst) هي ومضات من أشعة غاما مرتبطة بانفجارات نشيطة وبعيدة للغاية في المجرات البعيدة. وهي أكثر الأحداث الكهرومغناطيسية المضيئة التي تحدث في الكون. الانفجارات قد تستغرق من ملي ثانية إلى ما يقارب الساعة، ومعظم الانفجارات تستغرق بضع ثوانٍ. الانفجارات الأولية عادة ما تكون متبوعة بـ"وهيج " ضوئي يتبعه لمدة طويلة قد تستغرق ساعات أو أيام ففي الحقيقة تكون خليطًا من أشعة كهرومغناطيسية ذات أطوال موجات مختلفة منها الأشعة السينية والأشعة فوق البنفسجية والضوء المرئي والأشعة تحت الحمراء والموجات الراديوية.
تُشاهد معظم انفجارات أشعة غاما في هيئة حزمة ضيقة من الإشعاع المكثف (نفاثة) تنبعث خلال انفجار مستعر أعظم (سوبرنوفا)، أو في نجم ذو معدل دوران عال حول نفسه (مثل النجوم النباضة)، أو عندما يتقلص نجم كبير الكتلة (ربما 10 - 100 كتلة شمسية مكوّنًا ثقبًا أسودًا. كما تشاهد انفجارات أشعة غاما قصيرة الأمد ولا تستغرق إلى بضعة ثوان، وهذه تنشأ من مصدر آخر، يرجح أن يكون ناتجا عن اندماج بين النجوم الثنائية أو تقلص مفاجئي لنجم نيوتروني.
معظم مصادر انفجارات أشعة غاما تبعد بلايين السنين الضوئية عن الأرض، مما يعني أن هذه الانفجارات هي في نفس الوقت قوية جدًا (الانفجار العادي يطلق في ثوان قليلة طاقة تقترب مما تطلقه الشمس خلال بلايين سنة)، وهي تحدث في أجزاء الكون جميعًا ونادرة جدًا (بضعة انفجارات في كل مجرة خلال كل مليون سنة). جميع انفجارات أشعة غاما التي رُصدت أتت من خارج مجرة درب التبانة، على الرغم من رصد نوع من الظواهر قريب منها في مجرتنا، مثل "انفجارات أشعة غاما الضعيفة المتكررة" والتي تصدرها النجوم المغناطيسية (نوع من النجوم النيوترونية) داخل درب التبانة. ويفترض الفلكيون أنه إذا حدث انفجار أشعة غاما في درب التبانة وأصابت نفاثته الأرض إصابة مباشرة فقد يسبب انقراضًا جماعيًا للحياة على الأرض.[1]
اكتشافها
اكتشفت انفجارات أشعة غاما لأول مرة خلال الستينيات من القرن الماضي عن طريق مجموعة من الأقمار الصناعية التي صنعت للكشف عن تجارب الأسلحة النووية السرية. وسجلت أجهزة الأقمار الصناعية أشعة غاما وبعد فحص مصدرها تيبين أنها لا تأتي من مصدر من الأرض أو من الشمس بل تأتي من مناطق بعيدة جدا في أعماق الكون، تقدر ببلايين السنين الضوئية (أي يحتاج ضوؤها بلايين السنين للوصول إلينا). اقترحت عدة نماذج نظرية لتفسير هذه الانفجارات في السنوات التي تلت الاكتشاف، مثل اصطدامات بين المذنبات والنجوم النيوترونية [2]. وكانت المعلومات المعينة عمليا قليلة للتحقق من صحة هذه النماذج النظرية. وفي عام 1997 حين تم اكتشاف وهيج متعقب (أنظر أسفله) من الأشعة السينية والضوء المرئي من أحد الأجرام كما أمكن قياس انزياحه الأحمر باستخدام التحليل الطيفي. هذه الاكتشافات، ودراسات لاحقة تختص بالمجرات والمستعرات العظيمة التي تترافق معها هذه الانفجارات، فتمكن الفلكيون من تحديد بُعد وشدة سطوع انفجارات أشعة غاما وقياس منحنياتها الضوئية، وأخيرا تبين أن هذه الانفجارات تحدث في المجرات البعيدة وتترافق مع نهاية عمر نجم ضخم (أي ذو كتلة أكبر مئات المرات من كتلة الشمس).
التاريخ
تم اكتشاف انفجارات أشعة غاما لأول مرة في أواخر عام 1960م بواسطة الأقمار الصناعية الأمريكية فيلا، التي صُنعت لاتقاط انبعاثات أشعة غاما الصادرة عن تجارب الأسلحة النووية السرية المُجراة في الفضاء. وكانت الولايات المتحدة قد اشتبهت في أن الاتحاد السوفياتي قام بمحاولة إجراء تجارب نووية سرية بعد التوقيع على معاهدة حظر التجارب النووية في عام 1963. وفي 2 يوليو 1967، وتحديدًا في الساعة 14:19 بالتوقيت العالمي المنسق، قام القمران الصناعيان "فيلا 3" و"فيلا 4" بالكشف عن ومضة من أشعة غاما لا تشبه انبعاثات أي أسلحة نووية معروفة. [3] لم يكن من المؤكد ما حدث بالضبط ولذا تم تعيين فريق في المعمل الوطني لوس ألاموس العلمي LANL تحت رعاية راي كلِبِسيدل للتحقق من البيانات. وتم إطلاق أقمار فيلا الصناعية بعد ذلك مزوّدة بآلات أفضل وتابع فريق لوس آلاموس المشاهدات للبحث عن انفجارات أشعة غاما أخرى.
ومن خلال تحديد مناطق حدوث الانفجارات التي رصدتها الأقمار الصناعية المختلفة، فاستطاع العلماء معرفة مواقع تقريبية لستة عشر انفجاراً، واستبعدوا تماماً أن يكون المصدر من الأرض أو الشمس. وتحقق فريق العلماء من هذا الاكتشاف ونُشر البحث في "مجلة الفيزياء الفلكية" عام 1973 في مقال بعنوان: "أرصاد لانفجارات أشعة غاما من مصادر كونية".[3].
قدم العلماء العديد من النظريات لتفسير هذه الانفجارات، وكانت ترجح أولًا أن مصادرها قريبة داخل مجرة درب التبانة. ولكن لم يحرز تقدم يذكر حتى عام 1991 حيث قام مرصد كومبتون لأشعة غاما (BATSE) بالمشاهدات، وكان حساسًا للغاية لأشعة غاما ووجد أن قياساته تبين توزيعًا متساويًا لانفجارات أشعة غاما في جميع أنحاء الكون. وتبين أن انفجارات أشعة غاما لا تأتي من مجرتنا: مجرة درب التبانة ولا من حوصلة مجرة.[4] وإنما تأتي أشعة غاما الناتجة عن انفجارات أشعة غاما من خارج مجرة درب التبانة.[5][6][7].
لعقود من الزمان بعد اكتشاف انفجارات أشعة غاما واصل الفلكيون البحث عن الجرم السماوي الذي تحدث فيه مثل تلك الانفجارات: أي جرم سماوي يتفق موقعه مع موضع انفجار من هذا النوع، وبحثوا ربما عن قزم أبيض أو نجم نباض، أو مستعر أعظم فلم يتوصلوا إلى حل للمسألة.
وفكر العلماء في العمليات الفيزيائية التي يمكن أن تصدر تلك الأشعة العالية الطاقة، وافترض العالم بشينسكي [8] أن مثل هذا الانفجار لا بد وأن يتبعه إشعاعات ذات طول موجة أكبر تختفي رويدًا رويدًا بسبب اصطدام أشعة غاما الأصلية بالوسط الغازي بين النجوم. وكانت أول محاولات قياس "وهيج متعقب" ليست ناجحة بسبب صعوبة تحديد موقع الجرم السماوي الذي تصدر منه. ثم جاء النجاح في فبراير 1997 عندما رصد المرصد الفضائي بيبوساكس انفجار أشعة غاما 970228. وسمي بهذا الاسم مطابقًا لتاريخ اكتشافه، فالرقمين الأولين يعطيان السنة، والرقمان الثانيان يعطيان الشهر، والرقمان الثالثان يعطيان يوم اكتشافه.
وعندما وجهت كاميرا تقيس أشعة إكس في اتجاه الأنفجار سجلت وهج أشعة إكس وهو يضعف تدريجيًا. كما استطاع مرصد وليام هرشل تسجيل ضوءًا خافتًا يضعف تدريجيًا في نطاق الضوء المرئي وذلك لمدة 20 بعد الانفجار.[9] وبعد ضعف الضوء الآتي من مصدر الانفجار استطاع التصوير المركز من تصوير مجرة تأوي هذا الانفجار وينبعث الوهيج المتعقب من أحد الأجرام في طرفها. .[10]
ونظرًا للضعف الشديد لضوء تلك المجرة فلم يمكن رؤيتها من قبل. كما استطاع مسبار بيبوساكس حدث آخر وهو انفجار أشعة غاما 970508. وكان تحديد موقع الأنفجار نحو أربعة ساعات فقط بعد حدوثه بحيث سمح لفريق العلماء أن يجروا مشاهداتهم في وقت قصير بعد الأنفجار ومتابعته. واستطاعوا تسجيل طيف الامتصاص للجرم السماوي وتبين أن انزياحه الأحمر بمقدار z = 0.835، مما يجعله على بعد 6 مليار سنة من الأرض.[11] وكان ذلك أدق تعيين لبعد انفجار أشعة غاما، وبالإضافة إلى اكتشاف المجرة العائلة له 970228 فتبين أن انفجار أشعة غاما حدث على مسافة عظيمة البعد عنا.[12]
وخلال عدة أشهر انتهت مشكلة المسافة بيننا وبين انفجارات أشعة غاما التي حيرت العلماء من قبل. وتبين أنها تحدث في مجرات بعيدة جدًا عن مجرتنا ولهذا يصعب رؤية ضوئها. ثم جاء العام التالي واكتشف انفجار أشعة غاما 980425 الذي تبعه انفجار مستعر أعظم وهو SN 1998bw مبينًا علاقة وثيقة بين انفجار أشعة غاما وموت نجم ضخم بالغ الكتلة. وأعطي هذا الأنفجار تفسيرًا مؤكدًا عن طبيعة الأنظمة التي تؤدي إلى تلك الأنفجارات.[13]
لأن من لمعان خافت جدًا من هذه المجرة، على مسافة لا تقاس بالضبط كان لعدة سنوات. قبل ذلك الوقت بكثير، إنجازًا كبيرًا آخر وقع مع الحدث القادم سجلتها بيبوساكس ، GRB 970508. هذا الحدث كان المترجمة في غضون أربع ساعات لاكتشافها، مما يسمح للفرق البحث على الشروع في تقديم الملاحظات في وقت أقرب بكثير من أي انفجارات سابقه. الطيف للكائن كشفت طيف أحمر = ض 0.835، ووضع انفجر على مسافة ما يقرب من 6 مليارات سنة ضوئية عن الأرض.[14] هذا هو مصير أول دقيقة من بعد المسافة إلى أنفجار أشغة غاما، وجنبًا إلى جنب مع اكتشاف المجرة المضيفة 970228 أثبتت أن انفجارات أشعة غاما تحدث في مجرات بعيدة للغاية.[15] في غضون بضعة أشهر، الجدل حول بعد المسافة: تبين أن انفجارات أشعة غاما كانت من خارج مجرة درب التبانة، فالأحداث تنشأ داخل مجرات بعيدة على مسافات هائلة تقاس بملايين أو بلايين السنين الضوئية. في العام التالي، أعقب أحد انفجارات أشعة غاما مستعر أعظمفي نفس المجرة مما يشير إلى وجود علاقة واضحة بين انفجار أشعة غاما وموت نجم ضخم جدًا. هذا الانفجار قدم أول دليل قوي حول طبيعة الأجرام التي تنفجر منتجة أشعة غاما.
بيبوساكس تعمل حتى عام 2002، وتم إنزال CGRO (مع BATSE) في عام 2000. ومع ذلك، فإن الثورة في دراسة انفجارات أشعة غاما أدت إلى دوافع تطوير عدد من الأدوات الإضافية المصممة خصيصًا لاستكشاف طبيعة GRBs، خاصة في اللحظات الأولى التي تلت الانفجار. أول بعثة من هذا القبيل، HETE - 2، [16] بدأت في عام 2000 حتى عام 2006، تم توفير معظم اكتشافات كبيرة خلال هذه الفترة. واحدة من أنجح بعثات الفضاء حتى الآن، وأطلق مرصد سويفت الفضائي في عام 2004 ولا يزال يعمل اعتبارًا من عام 2009 وهو سريع وحساس للغاية مجهز للكشف عن أشعة غاما والانفجارات تلقائيًا. وفي الآونة الأخيرة تم اكتشاف الانفجارات بمعدل عدة مئات في السنة، بعضها متألق بما يكفي فتكون طاقته عالية للغاية أو قريبًا نسبيًا من الأرض. علاوة على ذلك فهو يعطي إشارة للارض عند اكتشافه لانفجار حدث، وهو متصل بشبكة من المراصد على الأرض ومن ضمنها تلسكوبات البصرية التي تستجيب على الفور للإشارات المرسلة من القمر الصناعي وتقوم بمتابعة انفجار أشعة غاما، في غضون بضع ثوان من بعد اكتشاف المرصد الفضائي له.[17][18]
بينت القياسات الجديدة على مدى السنوات القليلة الماضية أن انفجارات أشعة غاما القصيرة تعتبر فئة منفصلة (على الأرجح بسبب دمج النجوم النيوترونية وغير المرتبطة بالمستعرات العظمى)، واكتشاف الموسعة، عدم انتظام النشاط في اشتعال موجات أشعة اكس دائم للكثير من بعد دقائق من GRBs أكثر، واكتشاف معظم GRB مضيئة الأكثر بعدًا GRB 090423) عن الأجسام في الكون.
وهيج متعقب
اكتشفت خلال التسعينيات من القرن الماضي أنواع للإصدارات النجمية تكون لفترة قصيرة وذات طاقة محددة وشديدة (عادة تكون سريعة الظهور وشديدة على هيئة أشعة غاما ثم يليها وهيج في الضوء المرئي يتلاشى تدريجيًا، كما هو الحال في نوفا أو المستعر الأعظم، وانفجارات أشعة غاما المتنوعة.[19] وبعضها يبين منحنيين ضوئيين متتطابقين أحدهما قبل الآخر، ويأتيان في أعقاب أنفجار أشعة غاما.[20] وقد يكون هناك تباين كبير بين الأنواع: تختلف مدة الانبعاثات المشاهدة بين ثوان إلى مئات الدقائق. ويمكن أن يكون هناك ذروة واحدة للإصدار أو عدة قمم متتالية أصغر subpulses، وبعض الانفجارات تسبقها خطوة تمهيدية "للحدث".[21]
على الرغم من أن بعض المنحنيات الضوئية يمكن استنساخها باستخدام نماذج فيزيائية مبسطة، [22] لوحظ عدم إحراز تقدم في فهم التنوع الكامل للانفجارات، واقترحت طرق للتصنيف ولكن كثيرًا ما تكون قائمة على أساس الاختلافات في أشكال منحنيات الضوء. ولكن هذه الاختلافات قد لا تكون ناجمة عن مجموعة متنوعة من الافتراضات وطرق مختلفة للتوفيق بين الافتراضات الفيزيائية والمنحنى المشاهد [nb 1] بالنسبة لعدد كبير من انفجارات أشعة غاما bimodality تظهر واضحة، مما يشير إلى وجود اثنين من الأنواع منفصلة هي: "قصيرة" وهي الأحداث التي يبلغ متوسط مدتها حوالي 0.3 ثانية، وعملية "طويلة" وهي الأحداث التي يبلغ متوسط مدتها نحو 30 ثانية.[23] مع وجود تداخل كبير في المنطقة الوسطية بين أمد 2 ثانية و20 ثانية. قد تلزم تصنيفات إضافية وراء أنواع هذه الانفجارات، ولا بد من استمرار المشاهدات وتطوير النظريات للوصول إلى حل مرضي.[24][25][26][27]
انفجارات أشعة غاما الطويلة
وقد لوحظ أن مدة معظم انفجارات أشعة غاما تستمر بين 2 إلى 30 ثانية وتصنف هذه بأنها انفجارات أشعة غاما الطويلة. لأن هذه الأحداث تشكل الغالبية من الانفجارات، وأنها تميل إلى أن تكوّن شفقًا لامعًا. وقد درست تفاصيل ذلك النوع من الانفجار وقورنت بنظرائهم القصيرة. تقريبًا كل انفجارات أشعة غاما المدروسة ترتبط بتشكيل النجوم في مرحلة النسق الأساسي وكذلك يرتبط بمرحلة مستعر أعظم بشكل لا لبس فيه، ويتزامن انفجار أشعة غاما الطويل لنجم مع موت النجوم الهائلة (ذات كتلة تزيد مئات المرات عن كتلة الشمس).[28]
انفجارات أشعة غاما القصيرة
الأحداث ذات المدة الأقل من ثانيتين تصف أنفجار أشعة غاما القصيرة الأمد. حتى عام 2005 لم تكتشف تلك الانفجارات إلا في حالات قليلة، والقليل معروف عن كيفية حدوثهم. واكتشفت في نجوم المجرة وكذلك في نجوم المجرات الأهليلجية الكبيرة والمتوسطة.[29][30][31] وتُستبعد هذه الانفجارات في النجوم الضخمة، مؤكدة أن طبيعة الانفجارات القصيرة (أقل من ثانيتين) تختلف عن الانفجارات الطويلة التي تحدث في نجوم تبلغ كتلتها مئات المرات من كتلة الشمس. ويعتقد أن انفجار أشعة غاما القصير الأمد يكون مصاحبًا لتحول نجم عادي الكتلة (مثل كتلة الشمس) إلى نجم نيوتروني بعد استهلاكه لوقوده.[32][33][34]
نفاثات انطلاق الطاقة
انفجارات أشعة غاما تكون شديدة جدًا فهي تلاحظ من الأرض على الرغم المسافات العظيمة بيننا وبينها التي تبلغ أحيانًا مليارات السنين الضوئية (مقارنة مع بضع عشرات من السنين الضوئية بيننا وبين نجوم مجرتنا، مجرة درب التبانة). الأكثر من هذا هو انطاق الطاقة في هيئة أشعة غاما لمدة قصيرة (من عدة ثوان إلى 30 ثانية)، ثم يتبعها إصدارات أشعة كهرومغناطيسية من جميع الأنواع من أشعة سينية وأشعة فوق البنفسجية وضوء مرئي، وأشعة تحت الحمراء وأشعة راديوية تستغرق عدة دقائق أو عدة أيام. وكما في حالة انفجار أشعة غاما 080319ب على سبيل المثال كان يتبع انفجار أشعة غاما وهيج متعقب (أنظر أسفله) بلغت ذروته 5.8 قدر ظاهري.[35] وهو تألق مماثل لتألق النجوم التي ترى بالعين المجردة على الرغم من بعد الانفجار عنا مسافة 7.5 مليار سنة ضوئية.
تحتاج شدة اللمعان المسجلة الآتية من بعد كبير إلى مصدر للإشعاع قوي جدًا. وباعتبار أن النجم يصدر تلك الطاقة متساوية في جميع الاتجاهات فإن انفجار مثل انفجار أشعة غاما 080319ب قد يبلغ تحول كتلة تعادل كتلة الشمس إلى طاقة في هذا الوقت القصير الذي يبلع عدة دقائق.[36]
لا نعرف في الفيزياء تفاعل ينتج تلك الطاقة الهائلة في ذلك الوقت القصير. لهذا فيعتقد أن إصدار أشعة غاما يكون موجها في اتجاه معين وينحصر فيه الجسيمات والإشعاع في هيئة نفاثة (أو نفاثتين) تنطلق بسرعة مقاربة من سرعة الضوء.[37][38] ويمكن تقدير اتساع مخروط النفاثة من تعيين المنحنى الضوئي للوهيج المتعقب: وهو زمن ينخفض فيه الوهيج المتعقب انخفاضًا مفاجئًا بعد انخفاض بطيء، وذلك في الوقت الذي تقل فيه سرعة انطلاق النفاثة وتقل كثيرًا عن سرعة الضوء (كلما كانت الجسيمات في النفاثة سريعة كلما تفاعلت مع بعضها البعض بشدة وتطلق أشعة غاما).[39][40] ويبدو من المشاهدات أن زاوية مخروط النفاثة قد تختلف بين 2 إلى 20 درجة.[41]
ونظرًا لأن إصدارات أشعة غاما تكون منحصرة في نفاثات ضيقة فيعتقد أن معظم تلك النفاثات أو الانفجارات لا نراه من الأرض. وتركيز إصدار النجم لأشعة غاما في نفاثة في اتجاه الأرض هو الذي يجعل لمعان النجم يبدو أشد كثيرًا عن أن يصدره موزعًا في جميع الاتجاهات. وعند أخذ ذلك في الحسبان فيمكن تقدير الطاقة المنطلقة في النفاثة من النجم بنحو 1044 جول، أي نحو 1/2000 من كتلة الشمس.[41]
وهذه الطاقة يمكن مقارنتها بالطاقة الصادرة من مستعر أعظم نوع 1ب أو 1سي. وقد شوهدت مستعرات عظمى عظيمة التألق متزامنة مع حدوث انفجارات أشعة غاما بالقرب منها.[13] وتعضد مشاهدات انحصار انطلاق الطاقة في نفاثات في انفجارات أشعة غاما في مشاهدات مستعرات عظمى من نوع 1 سي قريبة ويكون انطلاق الطاقة فيها أيضًا غير متساويًا كرويًا.[42] وكذلك من تسجيلات أشعة راديوية تستمر فترة طويلة من بعد أن يخفت إصدار أشعة غاما.[43]
أسلاف
نظرًا للمسافة الهائلة بيننا وبين مصادر انفجار أشعة غاما فمن الصعب تحديد أسلاف والنظم التي تنتج هذه التفجيرات، وتحديدها بدقة. وهي تحدث لنجوم بالغة الكتلة حيث تقدر كتلتها بنحو 20 إلى 100 كتلة شمسية.
واقتران حدوث الانفجارات الطويلة مع مستعر أعظم وحقيقة حدوثها في مجرات تتكون فيها نجوم جديدة بسرعة تؤيد رأي حدوثها في نجوم بالغة الكتلة. وأكثر التفسيرات قبولًا هو أن ميكانيكية حدوث الانفجار الطويل تنتج طبقًا لنموذج الكولابسار،[44] الذي يتميز بقلب للنجم عظيم الكتلة، ذو معدنية منخفضة، ونجم يدور بسرعة عظيمة حول محوره حيث يتقلص في هيئة ثقب أسود عند نهاية عمره. وتنهار مادة النجم القريبة من قلبه مشكلة دوامة هائلة في شكل قرص تقلصي. ويتسبب انهيار المادة في الثقب الأسود في تكون نفاثتين تنطلقان بسرعة مقاربة من سرعة الضوء تنطلقان عبر محور الدوران متخللة غلاف النجم وهي تتكون من أشعة غاما وجسيمات بلازما. وبعض النماذج المفترضة للانفجار تميل إلى القول بأن الانفجار ينشأ عن ما يسمى بالنجم المغناطيسي وليس عن ثقب أسود، مع الإبقاء على باقي مواصفات النموذج (من وجهة تقلص قلب نجم عظيم الكتلة وتكون النفاثات الهائلة السرعة).[45]
ومن أقرب نجوم المجرة التي يمكن أن تنفجر في صورة أنفجار أشعة غاما النجوم عظيمة الكتلة من نوع نجوم ولف-رايت وهي نجوم ذات درجة حرارة عالية جدًا، تعمل على بعثرة هيدروجينها الباقي وبعض أجزاء طبقتها العليا في الفضاء تحت فعل ضغطها الإشعاعي.
إيتا كارينا ونجم WR 104 هي من النجوم المرشحة للانفجار مع إصدار أشعة غاما.[46] ولكن لا يبدو أن نجمًا من نجوم مجرتنا له الصفات التي تؤدي إلى انفجاره كانفجار أشعة غاما.[47]
زمن جهة أحرى فإن الظواهر تشير إلى أن انفجارات أشعة غاما القصيرة الزمن أن تنتج عن اندماج نجمين مزدوجية من نوع النجوم النيوترونية. وطبقًا لنموذج هذا النوع من الانفجار أن النجمين يقتربان شيئًا فشيئًا من بعضهما في مسار حلزوني بسبب إشعاعهما الجاذبي.[48][49] إلى أن يحطم كل نجم الآخر بسبب قوى المد والجزر حتى يندمجان في ثقب أسود. ويعمل انهيار المادة على الثقب الأسود المتكون على تكوين دوامة مادية على هيئة القرص تؤدي إلى انفجار مشابه لنموذج الكولابسر.[50][51][52][53]
آليات انفجار أشعة غاما
الوسائل التي يمكن بها انفجارات أشعة غاما تحويل الطاقة إلى الإشعاع لا تزال غير مفهومة تمامًا، واعتبارًا من عام 2007 لم يكن هناك نموذج مقبول عمومًا لكيفية حدوث هذه العملية.[54] أي نموذج ناجح للجي آر بي الانبعاثات يجب أن تفسر عملية فيزيائية لتوليد أشعة غاما الانبعاثات التي تتوافق مع التنوع الملاحظ في ضوء المنحنيات، والأطياف، وغيرها من الخصائص.[55] تحديًا من نوع خاص هو الحاجة إلى شرح كفاءات عالية جدًا أن يتم الاستدلال على ذلك من بعض الانفجارات: بعض انفجارات أشعة غاما يمكن تحويل ما يصل إلى النصف (أو أكثر) من الطاقة في انفجار أشعة غاما.[56] الملاحظات الأخيرة من نظيره البصرية مشرق من جي آر بي 080319B، الذي انحناء الضوء مترابطة مع أشعة غاما ضوء المنحنى [35] قد اقترح أن كومبتون عكسية قد تكون عملية مهيمنة في بعض المناسبات. في هذا النموذج، الموجودة من قبل المنخفضة فوتونات الطاقة متناثرة من الإلكترونات النسبية في الانفجار، وزيادة طاقتها عن طريق عامل كبير وتحويلها إلى أشعة غاما.[57]
يتراوح الطول الموجي لأشعة الوهيج المتعقب بين الأشعة السينية إلى نطاق الأشعة الراديوية. أي أن الطاقة المنبعثة من جراء الانفجار لم يشع بعيدًا في الانفجار نفسه يأخذ شكل المسألة أو الطاقة الانتقال إلى الخارج في ما يقرب من سرعة الضوء. ويصطدم هذا الموضوع مع غاز ما بين النجوم المحيطة بها، فإن ذلك يخلق النسبية موجة الصدمة التي تنتشر ثم إلى الأمام في الفضاء بين النجوم. والثاني موجة الصدمة، صدمة عكس ذلك، قد نشر في هذه المسألة مرة أخرى إلى إخراجه. الالكترونات نشيطة للغاية في إطار موجة الصدمة التي عجلت بها حقول مغناطيسية قوية المحلية وتشع كما الانبعاثات السنكروتروني في معظم أنحاء الطيف الكهرومغناطيسي. [58][59] هذا النموذج كان ناجح عمومًا في نمذجة سلوك الشفق لوحظ في العديد من المرات في وقت متأخر (غالبًا، لساعات بعد أيام من الانفجار)، على الرغم من أن هناك صعوبات شرح كل ملامح الشفق بعد وقت قصير جدًا من انفجار أشعة غاما [60]
معدلات وآثار ذلك على الحياة
كشف الأقمار الاصطناعية التي تدور حاليًا في المتوسط حوالي انفجار واحد لأشعة غاما في اليوم الواحد بسبب انفجارات أشعة غاما مرئية لتشمل معظم المسافات في الكون يمكن ملاحظتها، وبلغ حجم التداول تشمل المليارات من المجرات، وهذا يشير إلى أن انفجارات أشعة غاما يجب أن تكون الأحداث نادرة للغاية في المجرة. قياس معدل بدقة أمر صعب، ولكن لمجرة تقريبًا نفس حجم مجرة درب التبانة، المعدل المتوقع (لGRBs طويل) هو واحد عن كل سنة انفجر 100,000 إلى 1,000,000.[61] نسبة ضئيلة فقط من هذه سوف تبث نحو الأرض. تقديرات معدلات GRBs قصيرة، بل هي أكثر غموضًا بسبب الكسر مبتهجًا غير معروف، ولكن ربما تكون قابلة للمقارنة.[62]
وأشعة غاما في مجرة درب التبانة، وإذا قريبة بما يكفي من الأرض وتبث نحو ذلك، قد يكون لها تأثيرات هامة على المحيط الحيوي. امتصاص الأشعة في الغلاف الجوي من شأنه أن يسبب الانحلال الضوئي من النيتروجين، وتوليد حامض النتريك التي من شأنها أن تعمل كمحفز لتدمير طبقة الأوزون. [63] وفقًا لدراسة عام 2004، جي آر بي على مسافة نحو فرسخ فلكي يمكن أن تدمر ما يصل إلى نصف الكرة الأرضية طبقة الأوزون، والأشعة فوق البنفسجية المباشرة من انفجار مقرونة إضافية الشمسية فوق البنفسجية التي تمر عبر تقلص طبقة الأوزون يمكن عندئذ أن يكون لها تأثيرات كبيرة محتملة على السلسلة الغذائية، ويحتمل أن يؤدي إلى انقراض جماعي.[1][64] ويقدر كاتبو التقرير أن واحدًا مثل هذا الاندفاع المتوقع في مليار سنة، وافترض أن اوردوفيكي - السيلوري الانقراض الحدث قد يكون نتيجة لمثل هذا التحول.
هناك دلائل قوية على أن غاما طويلة انفجارات اشعة تفضيلي أو حصرًا تحدث في مناطق المعدنية منخفضة. لأن درب التبانة وقد وغني بالمعادن منذ تشكيلها قبل الأرض، وهذا قد يقلل تأثير أو حتى القضاء على إمكانية قيام غاما الطويلة انفجار أشعة حدث داخل مجرة درب التبانة مليار دولار في غضون السنوات الماضية.[47] أي تحيزات المعدنية هذا ومن المعروف انها من انفجارات أشعة غاما القصيرة وهكذا، ويتوقف ذلك على معدل المحلية وخصائص مبتهجًا، وإمكانية لحدث قريب لكان لها أثر كبير على الأرض في بعض نقطة في الزمن الجيولوجي قد لا تزال كبيرة.[65]
انظر أيضاً
- حدث فلكي عابر
- انفجار أشعة غاما 090429B
- انفجار أشعة غاما 970508
- انفجار أشعة غاما 090423
- انفجار أشعة غاما 080319ب
- انفجار أشعة غاما 050904
- نباض التوأم
- تطور نجمي
- مرصد كومبتون لأشعة غاما
- مسبار ستيريو
- بيبوساكس
- قائمة انفجارات أشعة غاما
الهوامش
- [36] ^ مدة انفجار وعادة تقاس T90، وهي الفترة التي تصدر خلالها 90 % من الطاقة المنبعثة. بعض خلاف ذلك جي بي ار القصيرة وقد ثبت أن يعقبه الثاني، وقتًا أطول حلقة الانبعاثات أنه عندما تدرج في انفجار في ضوء النتائج منحنى T90 فترات تصل إلى عدة دقائق: هذه الأحداث ليست سوى قصيرة بالمعنى الحرفي عند هذا العنصر أمر مستبعد.
ملاحظات
- Melott 2004
- هيرلي 2003
- 2002، p.12 - 16
- Meegan 1992
- 2002، p.36 - 37
- Paczyński 1999، p. 6
- بيران 1992
- Paczynski 1993
- van Paradijs 1997
- Schilling 2002, p. 102
- Reichart 1995
- Schilling 2002, p. 118–123
- Galama 1998
- رايتشارت 1995
- شيلينغ 2002، p. 118-123
- ريكر 2003
- أكرلوف 2003
- أكرلوف 1999
- 2002، p. 37
- مارانى 1997
- & فيشمان Meegan 1995
- سيميتش 2005
- Kouveliotou 1994
- هورفاث 1998
- Hakkila 2003
- تشاتوبادياي 2007
- Virgili 2009
- & Woosley بلوم 2006
- بلوم 2006
- Hjorth 2005
- بيرغر 2007
- ناكار 2007
- Frederiks 2008
- هيرلي 2005
- Racusin 2008
- Bloom 2009
- Rykoff 2009
- Abdo 2009
- Sari 1999
- Burrows 2006
- Frail 2001
- Mazzali 2005
- Frail 2000
- MacFadyen 1999
- Metzger 2007
- Plait 2008
- Stanek 2006
- Abbott 2007
- Kochanek 1993
- Vietri 1998
- MacFadyen 2006
- Blinnikov 1984
- Cline 1996
- ستيرن 2007
- فيشمان، G. 1995
- & فان بيران 2006
- وزنياك 2009
- Mészáros 1997
- ساري 1998
- Nousek 2006
- Podsiadlowski 2004
- Guetta 2006
- Thorsett 1995
- Wanjek 2005
- Ejzak 2007
الكتب
- جيلبرت Vedrenne، جان لوك Atteia ، زخات أشعة غاما: الانفجارات ألمع في الكون (سبرينغر كتب براكسيس / علم الفلك وعلوم الكواكب) (غلاف فني) ردمك 3540390855 ردمك 978-3540390855. http://www.springer.com/astronomy/practical+astronomy/book/978-3-540-39085-5
المراجع
- Abbott, B.; et al. (2007). "Search for Gravitational Waves Associated with 39 Gamma-Ray Bursts Using Data from the Second, Third, and Fourth LIGO Runs". فيزيكال ريفيو. 77 (6): 062004. doi:10.1103/PhysRevD.77.062004. أرشيف خي:0709.0766v2}}.
- Abdo, A.A.; et al. (2009). "Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C". ساينس. 323 (5922): 1688. Bibcode:2009Sci...323.1688A. doi:10.1126/science.1169101. PMID 19228997. ;
- Jagos, P; Bouda, J; Dvorrák, R; Illek, J; Jurajdová, J (1999). "Observation of contemporaneous optical radiation from a gamma-ray burst". نيتشر. 398 (3): 400–402. Bibcode:1999Natur.398..400A. doi:10.1038/18837. PMID 18837.
- Akerlof, C.; et al. (2003). "The ROTSE-III Robotic Telescope System". Publications of the Astronomical Society of the Pacific. 115: 132–140. Bibcode:2003PASP..115..132A. doi:10.1086/345490.
- Atwood, W.B. (2009). "The Large Area Telescope on the Fermi Gamma-ray Space Telescope Mission". arXiv: [astro-ph].
- Barthelmy, S. D.; et al. (2005). "The Burst Alert Telescope (BAT) on the SWIFT Midex Mission". Space Science Reviews. 120 (3–4): 143–164. doi:10.1007/s11214-005-5096-3.
- Berger, E.; et al. (2007). "Galaxy Clusters Associated with Short GRBs. I. The Fields of GRBs 050709, 050724, 050911, and 051221a". المجلة الفيزيائية الفلكية. 660: 496–503. Bibcode:2007ApJ...660..496B. doi:10.1086/512664.
- Blinnikov, S.; et al. (1984). "Exploding Neutron Stars in Close Binaries". Soviet Astronomy Letters. 10: 177. Bibcode:1984SvAL...10..177B.
- Bloom, J.S.; et al. (2006). "Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b". المجلة الفيزيائية الفلكية. 638: 354–368. Bibcode:2006ApJ...638..354B. doi:10.1086/498107.
- Bloom, J.S.; et al. (2009). "Observations of the Naked-Eye GRB 080319B: Implications of Nature's Brightest Explosion". المجلة الفيزيائية الفلكية. 691: 723–737. doi:10.1088/0004-637X/691/1/723.
- Burrows, D.N.; et al. (2006). "Jet Breaks in Short Gamma-Ray Bursts. II. The Collimated Afterglow of GRB 051221A". المجلة الفيزيائية الفلكية. 653: 468–473. doi:10.1086/508740.
- Cline, D.B. (1996). "Primordial black-hole evaporation and the quark-gluon phase transition". Nuclear Physics A. 610: 500. Bibcode:1996NuPhA.610..500C. doi:10.1016/S0375-9474(96)00383-1.
- Chattopadhyay, T.; et al. (2007). "Statistical Evidence for Three Classes of Gamma-Ray Bursts". المجلة الفيزيائية الفلكية. 667: 1017. doi:10.1086/520317.
- Ejzak, L.M.; et al. (2007). "Terrestrial Consequences of Spectral and Temporal Variability in Ionizing Photon Events". المجلة الفيزيائية الفلكية. 654: 373–384. Bibcode:2007ApJ...654..373E. doi:10.1086/509106.
- Fan, Y. and Piran, T. (2006). "Gamma-ray burst efficiency and possible physical processes shaping the early afterglow". Monthly Notices of the Royal Astronomical Society. 369: 197–206. Bibcode:2006MNRAS.369..197F. doi:10.1111/j.1365-2966.2006.10280.x.
- Fishman, C.J. and Meegan, C.A. (1995). "Gamma-Ray Bursts". Annual Review of Astronomy and Astrophysics. 33: 415–458. doi:10.1146/annurev.aa.33.090195.002215.
- Fishman, G.J. (1995). "Gamma-Ray Bursts: An Overview". ناسا12 أكتوبر 2007.
- Frail, D.A.; et al. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". المجلة الفيزيائية الفلكية. 562: L557–L558. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119.
- Kecik, T; Zareba, B; Kecik, D; Dembowska, L (2000). "A 450 Day Light Curve of the Radio Afterglow of GRB 970508: Fireball Calorimetry". المجلة الفيزيائية الفلكية. 537 (7): 191–204. Bibcode:2000ApJ...537..191F. doi:10.1086/309024. PMID 309024. أرشيف خي:astro-ph/9910319}}.
- Frederiks, D.; et al. (2008). "GRB 051103 and GRB 070201 as Giant Flares from SGRs in Nearby Galaxies". In Galassi, Palmer, and Fenimore (المحرر). American Institute of Physics Conference Series. 1000. صفحات 271–275. Bibcode:2008AIPC.1000..271F. doi:10.1063/1.2943461.
- Frontera, F. and Piro, L. (1998). Proceedings of Gamma-Ray Bursts in the Afterglow Era. Astronomy and Astrophysics Supplement Series.
- Wang Lu, LJ; Demetriou, SK; Domino, EF (1998). "An unusual supernova in the error box of the gamma-ray burst of 25 April 1998". نيتشر. 395 (1): 670–672. Bibcode:1998Natur.395..670G. doi:10.1038/27150. PMID 27150.
- Garner, R. (2008). "NASA's Swift Catches Farthest Ever Gamma-Ray Burst". ناسا03 نوفمبر 2008.
- Gehrels, N.; et al. (2004). "The Swift Gamma-Ray Burst Mission". المجلة الفيزيائية الفلكية. 611: 1005–1020. Bibcode:2004ApJ...611.1005G. doi:10.1086/422091.
- Gehrels, N; Sarazin, CL; O'brien, PT; Zhang, B; Barbier, L; Barthelmy, SD; Blustin, A; Burrows, DN; Cannizzo, J (2005). "A short gamma-ray burst apparently associated with an elliptical galaxy at redshift z=0.225". Nature. 437 (7060): 851–854. doi:10.1038/nature04142. PMID 16208363. أرشيف خي:astro-ph/0505630}}.
- Grupe, D.; et al. (2006). "Jet Breaks in Short Gamma-Ray Bursts. I: The Uncollimated Afterglow of GRB 050724". المجلة الفيزيائية الفلكية. 653: 462. doi:10.1086/508739. أرشيف خي:astro-ph/0603773}}.
- Guetta, D. and Piran, T. (2006). "The BATSE-Swift luminosity and redshift distributions of short-duration GRBs". مجلة علم الفلك والفيزياء الفلكية. 453: 823–828. doi:10.1051/0004-6361:20054498.
- Hakkila, J.; et al. (2003). "How Sample Completeness Affects Gamma-Ray Burst Classification". المجلة الفيزيائية الفلكية. 582: 320. doi:10.1086/344568.
- Horvath, I. (1998). "A Third Class of Gamma-Ray Bursts?". المجلة الفيزيائية الفلكية. 508: 757. doi:10.1086/306416.
- Hjorth, J.; et al. (2005). "GRB 050509B: Constraints on Short Gamma-Ray Burst Models". المجلة الفيزيائية الفلكية. 630 (2): L117–L120. doi:10.1086/491733.
- Hurley, K., Cline, T. and Epstein, R. (1986). "Error Boxes and Spatial Distribution". In Liang, E.P. and Petrosian, V. (المحرر). AIP Conference Proceedings. Gamma-Ray Bursts. 141. المعهد الأميريكي للفيزياء. صفحات 33–38. .
- Hurley, K. (1992). "Gamma-Ray Bursts - Receding from Our Grasp". نيتشر. 357: 112. Bibcode:1992Natur.357..112H. doi:10.1038/357112a0.
- Hurley, K. (2003). "A Gamma-Ray Burst Bibliography, 1973–2001" ( كتاب إلكتروني PDF ). In Ricker, G.R. and Vanderspek, R.K. (المحرر). Gamma-Ray Burst and Afterglow Astronomy, 2001: A Workshop Celebrating the First Year of the HETE Mission. المعهد الأميريكي للفيزياء. صفحات 153–155. .
- Hurley, K; Boggs, SE; Smith, DM; Duncan, RC; Lin, R; Zoglauer, A; Krucker, S; Hurford, G; Hudson, H (2005). "An exceptionally bright flare from SGR 1806-20 and the origins of short-duration gamma-ray bursts". نيتشر. 434 (7037): 1098–1103. Bibcode:2005Natur.434.1098H. doi:10.1038/nature03519. PMID 15858565.
- Katz, J.I. (2002). The Biggest Bangs. مطبعة جامعة أكسفورد. .
- Klebesadel, R.; et al. (1973). "Observations of Gamma-Ray Bursts of Cosmic Origin". المجلة الفيزيائية الفلكية. 182: L85. doi:10.1086/181225.
- Kochanek, C.S. and Piran, T. (1993). "Gravitational Waves and gamma -Ray Bursts". المجلة الفيزيائية الفلكية. 417: L17–L23. Bibcode:1993ApJ...417L..17K. doi:10.1086/187083.
- Kouveliotou, C.; et al. (1993). "Identification of two classes of gamma-ray bursts". المجلة الفيزيائية الفلكية. 413: L101. Bibcode:1993ApJ...413L.101K. doi:10.1086/186969.
- Lamb, D.Q. (1995). "The Distance Scale to Gamma-Ray Bursts". Publications of the Astronomical Society of the Pacific. 107: 1152. Bibcode:1995PASP..107.1152 . doi:10.1086/133673.
- Lazzati, D. (2005). "Precursor activity in bright, long BATSE gamma-ray bursts". Monthly Notices of the Royal Astronomical Society. 357: 722–731. Bibcode:2005MNRAS.357..722L. doi:10.1111/j.1365-2966.2005.08687.x. أرشيف خي:astro-ph/0411753}}.
- MacFadyen, A.I. and Woosley, S. (1999). "Collapsars: Gamma-Ray Bursts and Explosions in "Failed Supernovae". المجلة الفيزيائية الفلكية. 524: 262–289. Bibcode:1999ApJ...524..262M. doi:10.1086/307790.
- MacFadyen, A.I. (2006). "Late flares from GRBs --- Clues about the Central Engine". AIP Conference Proceedings. 836: 48–53. Bibcode:2006AIPC..836...48M. doi:10.1063/1.2207856.
- Marani, G. F.; et al. (1997). "On Similarities among GRBs". Bulletin of the American Astronomical Society. 29. صفحة 839.
- Mazzali, P. A.; et al. (2005). "An Asymmetric Energetic Type Ic Supernova Viewed Off-Axis, and a Link to Gamma Ray Bursts". Science. 308 (5726): 1284–1287. doi:10.1126/science.1111384. PMID 15919986.
- Meegan, C. A.; et al. (1992). "Spatial distribution of gamma-ray bursts observed by BATSE". Nature. 355: 143. doi:10.1038/355143a0.
- Melott, A. L.; et al. (2004). "Did a gamma-ray burst initiate the late Ordovician mass extinction?". International Journal of Astrobiology. 3: 55–61. doi:10.1017/S1473550404001910.
- Meszaros, P. and Rees, M. J. (1997). "Optical and Long-Wavelength Afterglow from Gamma-Ray Bursts". Astrophysical Journal. 476: 232. doi:10.1086/303625.
- Metzger, B. (2007). "Proto-Neutron Star Winds, Magnetar Birth, and Gamma-Ray Bursts". AIP Conference Proceedings. 937: 521–525. doi:10.1063/1.2803618.
- Mukherjee, S.; et al. (1998). "Three Types of Gamma-Ray Bursts". Astrophysical Journal. 508: 314. doi:10.1086/306386.
- Nakar, E. (2007). "Short-hard gamma-ray bursts". Physics Reports. 442: 166–236. doi:10.1016/j.physrep.2007.02.005.
- McCray, Richard; et al. "Report of the 2008 Senior Review of the Astrophysics Division Operating Missions" ( كتاب إلكتروني PDF ).
- "Very Large Array Detects Radio Emission From Gamma-Ray Burst" (Press release). National Radio Astronomy Observatory. 1997-05-1504 أبريل 2009.
- Nousek, J. A.; et al. (2006). "Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data". Astrophysical Journal. 642: 389–400. doi:10.1086/500724.
- Paczyński, B. and Rhoads, J. E. (1993). "Radio Transients from Gamma-Ray Bursters". ApJL. 418: 5. doi:10.1086/187102.
- Paczyński, B. (1995). "How Far Away Are Gamma-Ray Bursters?". Publications of the Astronomical Society of the Pacific. 107: 1167. doi:10.1086/133674.
- Paczyński, Bohdan (1999). "Gamma-Ray Burst–Supernova relation". In M. Livio, N. Panagia, K. Sahu (المحرر). Supernovae and Gamma-Ray Bursts: The Greatest Explosions Since the Big Bang. معهد مراصد علوم الفضاء. صفحات 1–8. .
- Pedersen, H.; et al. (1986). "Deep Searches for Burster Counterparts". In Liang, Edison P.; Petrosian, Vahé (المحرر). AIP Conference Proceedings 141. Gamma-Ray Bursts. New York: American Institute of Physics. صفحات 39–46. .
- Plait, Phil (March 2, 2008). "WR 104: A nearby gamma-ray burst?". Discover07 يناير 2009.
- Piran, T. (1992). "The implications of the Compton (GRO) observations for cosmological gamma-ray bursts". Astrophysical Journal. 389: L45. doi:10.1086/186345.
- Piran, T. (1997). "Toward understanding gamma-ray bursts". In Bahcall, J. N. and Ostriker, J. (المحرر). Unsolved Problems in Astrophysics. صفحة 343.
- Podsiadlowski, Ph.; et al. (2004). "The Rates of Hypernovae and Gamma-Ray Bursts: Implications for Their Progenitors". Astrophysical Journal. 607L: 17P. doi:10.1086/421347.
- Prochaska, J. X.; et al. (2006). "The Galaxy Hosts and Large-Scale Environments of Short-Hard Gamma-Ray Bursts". Astrophysical Journal. 641: 989. doi:10.1086/501160.
- Racusin, JL; Karpov, SV; Sokolowski, M; Granot, J; Wu, XF; Pal'shin, V; Covino, S; Van Der Horst, AJ; Oates, SR (2008). "Broadband observations of the naked-eye gamma-ray burst GRB080319B". Nature. 455 (7210): 183–188. doi:10.1038/nature07270. PMID 18784718.
- Reddy, F. (2009-04-28). "New Gamma-Ray Burst Smashes Cosmic Distance Record" (Press release). NASA16 مايو 2009.
- Ricker, G. R. and Vanderspek, R. K. (2003). "The High Energy Transient Explorer (HETE): Mission and Science Overview". In Ricker, G. R. and Vanderspek, R. K. (المحرر). Gamma-Ray Burst and Afterglow Astronomy 2001: A Workshop Celebrating the First Year of the HETE Mission. 662. صفحات 3–16. doi:10.1063/1.1579291.
- Reichart, Daniel E. (February 19, 1998). "The Redshift of GRB 970508". Astrophysical Journal. American Astronomical Society. 495: L99. doi:10.1086/311222.
- Rykoff, E.; et al. (2009). "Looking Into the Fireball: ROTSE-III and Swift Observations of Early GRB Afterglows". ArXiv e-prints. 702: 489. doi:10.1088/0004-637X/702/1/489.
- Polak, L; Piran, T; Narayan, R (1998). "Spectra and Light Curves of Gamma-Ray Burst Afterglows". Astrophysical Journal Letters. 497 (5): L17. doi:10.1086/311269. PMID 311269.
- Sari, R; Piran, T; Halpern, J. P (1999). "Jets in Gamma-Ray Bursts". Astrophysical Journal. 519: L17–L20. doi:10.1086/312109.
- Schilling, Govert (2002). Flash! The hunt for the biggest explosions in the universe. Cambridge: Cambridge University Press. .
- Simić, S.; et al. (2005). "A model for temporal variability of the GRB light curve". In Bulik, T., Rudak, B, and Madejski, G. (المحرر). Astrophysical Sources of High Energy Particles and Radiation. صفحات 139–140. doi:10.1063/1.2141849.
- Stanek, K. Z.; et al. (April 6, 2006). "Protecting Life in the Milky Way: Metals Keep the GRBs Away" ( كتاب إلكتروني PDF ). Acta Astronomica. أرشيف خي:astro-ph/0604113v4}}.
- Stern, Boris E. and Poutanen, Juri (2004-05-28). "Gamma-ray bursts from synchrotron self-Compton emission". Monthly Notices of the Royal Astronomical Society. Wiley Interscience. 352 (3): L35–L39. doi:10.1111/j.1365-2966.2004.08163.x07 يناير 2009.
- Thorsett, S. E. (1995). "Terrestrial implications of cosmological gamma-ray burst models". Astrophysical Journal. 444: L53. doi:10.1086/18785815 سبتمبر 2007.
- "TNG caught the farthest GRB observed ever". Fundación Galileo Galilei. 200925 أبريل 2009.
- van Paradijs, J.; et al. (1997). "Transient optical emission from the error box of the gamma-ray burst of 28 February 1997". Nature. 386: 686. doi:10.1038/386686a0.
- Vietri, M. and Stella, L. (1998). "A Gamma-Ray Burst Model with Small Baryon Contamination". Astrophysical Journal. 507: L45–L48. doi:10.1086/311674.
- Virgili, F. J., Liang, E.-W. and Zhang, B. (2009). "Low-luminosity gamma-ray bursts as a distinct GRB population: a firmer case from multiple criteria constraints". MNRAS. 392: 91–103. doi:10.1111/j.1365-2966.2008.14063.x.
- Wanjek, Christopher (June 4, 2005). "Explosions in Space May Have Initiated Ancient Extinction on Earth". nasa.gov15 سبتمبر 2007.
- Watson, D.; et al. (2006). "Are short γ-ray bursts collimated? GRB 050709, a flare but no break". Astronomy and Astrophysics. 454: L123–L126. doi:10.1051/0004-6361:20065380.
- Woosley, S. E. and Bloom, J. S. (2006). "The Supernova Gamma-Ray Burst Connection". ARA&A. 44: 507–556. doi:10.1146/annurev.astro.43.072103.150558.
- Wozniak, P. R.; et al. (2009). "Gamma-Ray Burst at the Extreme: The Naked-Eye Burst GRB 080319B". ApJ. 691: 495–502. doi:10.1088/0004-637X/691/1/495.
الروابط الخارجية
- مواقع انبعاثات GRBs
- انفجارات اشعه غاما المنبعثه
- HETE - 2 : مستكشف الطاقة العالية العابرة
- انتغرال : غاما الدولي للفيزياء الفلكية بأشعة مختبر
- BATSE : الانفجار ومصدر عابر مستكشف
- فيرمي هابل أشعة غاما في الفضاء
- ذكي : استرو - غاما rivelatore على صورة في Leggero
- موجودة : العاشر الطاقوية السينية تلسكوب المسح
- جي آر بي متابعة البرامج
- GROND : انفجار أشعة غاما الضوئية القريبة من الأشعة تحت الحمراء للكشف عن
- موجه : حساس للألوان الروبوتية البصرية لرصد وقياس الاستقطاب التلسكوبات (ويكي دخول)
- RAPTOR : رابيد التلسكوبات البصرية لمواجهتها
- ROTSE : الروبوتية البصري العابر تجربة البحث
- PAIRITEL : بيترز الآلي تلسكوب تصوير بالأشعة تحت الحمراء
- ماستر : موبايل النظام الفلكي من منظار - روبوت
- KAIT : المقراب كاتزمان التلقائية التصوير
- الريم : العين السريعة جبل