الرئيسيةعريقبحث

حساب المثلثات الكروية


☰ جدول المحتويات


في الرياضيات، حساب المثلثات الكروية (Spherical Trigonometry)‏ هو فرع من فروع الهندسة الكروية، يهتم بالعلاقة الموجودة بين الدوال المثلثية لزوايا المضلعات الكروية (وبالتحديد مثلثات، رُسمن على كرة) محددات من قبل عدد من الدوائر العظمى المتقاطعة على الكرة. حساب المثلثات الكروية له أهمية كبيرة للحسابات في علم الفلك والجيوديسيا والملاحة.

من أجل المزيد من المعلومات حول أصول حساب المثلثات الكروية عند الإغريق والتطورات المهمة اللائي عرفها هذا المجال في العصر الإسلامي، انظر إلى تاريخ الحساب المثلثي وإلى الرياضيات في عصر الحضارة الإسلامية.

جاء هذا الموضوع ليؤتي ثماره في العصور الحديثة المبكرة مع تطورات مهمة قام بها جون نابير وديلامبر وآخرون، وحصل على شكل كامل بشكل أساسي بحلول نهاية القرن التاسع عشر مع نشر كتاب تودهنتر "Spherical trigonometry for the use of colleges and Schools".[1] ومنذ ذلك الحين، تطورات مهمة كانت تطبيق طرق المتجهات واستخدام الطرق العددية.

التمهيدات

ثمانية مثلثات كروية محددة بتقاطع ثلاث دوائر عظمى.

المضلعات الكروية

المضلع الكروي هو مضلع يقع على سطح الكرة يحدده عدد من أقواس الدوائر العظمى، والتي هي تقاطع السطح مع مستويات مارة بمركز الكرة. قد يكون لهذه المضلعات أي عدد من الأضلاع. مستويان يحددان هلالًا، يُطلق عليه أيضًا اسم "مضلع ثنائي" أو ثنائي الزاويا. النظير ثنائي الأضلاع للمثلث: مثال شائع هو السطح المنحني لقطعة كروية لبرتقالة. تحدد ثلاث مستويات مثلثا كرويا، الموضوع الرئيسي لهذه المقالة. تحدد أربع مستويات رباعيا كرويا: مثل هذا الشكل، والمضلعات ذات عدة أضلاع، يمكن دائمًا اعتبارها على أنها عدد من المثلثات الكروية.

من هذه النقطة سيقتصر المقال على مثلثات كروية، يشار إليها ببساطة على أنها "مثلثات".

الترميز

  • يُشار إلى كل من الرؤوس والزوايا في الرؤوس بالحروف الكبيرة نفسها A و B و C.
  • الزوايا A، وB وC للمثلث متساوية مع الزوايا بين المستويات التي تتقاطع مع سطح الكرة. تقاس الزوايا بالراديان. تكون زوايا المثلثات الكروية "العادية" (بالاتفاقية) أقل من π بحيث تكون π < A + B + C < 3π.[1]
  • يُشار إلى الأضلاع بأحرف صغيرة a، وb و c. على كرة الوحدة (كرة نصف قطرها يساوي 1)، أطوالها تساوي عدديًا قياس الزوايا التي تقابل أقواس الدائرة العظمى في المركز بالراديان. أضلاع المثلثات الكروية "العادية" تكون (بالاتفاقية) أقل من π بحيث يكون 0 < a + b + c < 2π.[1]
  • نصف قطر الكرة يؤخذ كوحدة (يساوي 1). بالنسبة للمعضلات العملية المحددة في نصف قطر الكرة R، يجب قسمة الأطوال المقاسة للأضلاع على R قبل استخدام المتطابقات الواردة أدناه. بطريقة مماثلة، بعد حساب في كرة الوحدة، يجب ضرب الأضلاع a، وb وc في R.

المثلثات القطبية

المثلث القطبي A'B'C'

على الكرة التي مركزها O، نعتبر نقطتين A و B متمايزتين وليست متعاكستين قطريا. المستقيم الذي يشمل O ويعامد المستوي OAB ويقطع الكرة في نقطتين تسمى أقطاب المستوي (OAB).

بالنسبة للمثلث "العادي" ABC المرسوم على كرة، نسمي C' قطب المستوي (OAB) الواقع على نفس نصف الكرة التي تقع فيه C. نقوم بانشاء النقطتين A' وB' بنفس الطريقة. يسمى المثلث (A'B'C) بالمثلث القطبي للمثلث ABC.

تثبت مبرهنة مهمة جدًا[1] أن زوايا وأضلاع المثلث القطبي تُعطى بواسطة:

لذلك، إذا تم إثبات أي متطابقة للمثلث ABC، فيمكننا على الفور اشتقاق متطابقة ثانية بتطبيق المتطابقة الأولى على المثلث القطبي عن طريق إجراء التعويضات المذكورة أعلاه. هذه هي الطريقة التي يتم اشتقاق معادلات جيب التمام التكميلية من معادلات جيب التمام. المثلث القطبي للمثلث القطبي هو المثلث الأصلي.

مجموع زوايا المثلثات

قد يصل مجموع زوايا المثلثات الكروية إلى أي 900°، وقد يصل مجموع زوايا المثلثات الكروية "العادية" إلى أي 540°.

قواعد الجيب وجيب التمام

قاعدة جيب التمام

قاعدة جيب التمام هي المتطابقة الأساسية لحساب المثلثات الكروية: جميع المتطابقات الأخرى، بما في ذلك قاعدة الجيب، قد تكون مشتقة من قاعدة جيب التمام.

تقارب هذه المتطابقات قاعدة جيب التمام للمثلثات المسطحة إذا كانت الأضلاع أصغر بكثير من نصف قطر الكرة. (في كرة الوحدة، إذا كانت a, b, c << 1: نضع و وهكذا.)

قاعدة الجيب

تعطى قانون الجيب للمثلثات الكروية بواسطة الصيغة التالية:

تقارب هذه المتطابقات قانون الجيب للمثلثات المسطحة عندما تكون الأضلاع أصغر بكثير من نصف قطر الكرة.

المتطابقات

قواعد جيب التمام التكميلية

تطبيق قواعد جيب التمام على المثلث القطبي يعطي، أي تعويض A بـ π-a، وa ب π-A ...، إلخ.

متطابقات نصف الزاوية ونصف الضلع

مع و:

مراجع

  1. Isaac Todhunter (1886). Spherical Trigonometry (باللغة الإنجليزية) (الطبعة 5). MacMillan. مؤرشف من الأصل في 14 أبريل 2020.

مقالات ذات صلة

موسوعات ذات صلة :