الرئيسيةعريقبحث

صلب أرخميدي


☰ جدول المحتويات


The rhombicosidodecahedron, one of the Archimedean solids

في الهندسة صلب أرخميدي هو متماثل للغاية، وشبه منتظم محدب متعدد الوجوه تتكون من اثنين أو أكثر من أنواع مضلع منتظم ق اجتماع مماثل في القمم. فهي مميزة، والتي تتكون من نوع واحد فقط من اجتماع المضلع في القمم متطابقة .

"القمم متطابقة" تؤخذ عادة على أنها تعني أن أي رؤوس اثنين،

أصل التسمية

تأخذ اسمها من أرخميدس، الذي ناقش العمل خلال نهضة الرياضيات والتوصل إلى هذه القيم من أشكال نقية واكتشاف كل من هذه الأشكال.

اكتمل هذا البحث حول 1620 من قبل يوهانس كبلر، [1] الذي يعرف المناشير، منشور مضاد، والمواد الصلبة غير محدب والمعروفة باسم في كبلر، Poinsot متعددات

التصنيف

هناك 13 أرخميدس المواد الصلبة (15 إذا كان مرآة صورة ق اثنين من enantiomorphs، انظر أدناه، تحسب على حدة).

هنا في تكوين قمة الرأس يشير إلى نوع من المضلعات المنتظمة التي تحقق في أي قمة معين. على سبيل المثال، قمة التكوين من (4,6,8) يعني أن مربع، مسدس، ومثمن نلتقي في قمة الرأس (مع أن في اتجاه عقارب الساعة من أجل المتخذة حول قمة الرأس).

الاسم
(Vertex configuration)
شفّاف الصلب شبكة الوجوه الزوايا Vertices مجموعة النقاط
truncated tetrahedron
(3.6.6)
Truncated tetrahedron
(Animation)
Truncated tetrahedron.png Truncated tetrahedron flat.svg 8 4 triangles
4 سداسي أضلاعs
18 12 Td
cuboctahedron
(3.4.3.4)
Cuboctahedron
(Animation)
Cuboctahedron.png Cuboctahedron flat.svg  14  8 مثلثs
6 مربع
24 12 Oh
truncated cube
or truncated hexahedron
(3.8.8)
Truncated hexahedron
(Animation)
Truncated hexahedron.png Truncated hexahedron flat.svg 14 8 triangles
6 مثمنs
36 24 Oh
truncated octahedron
(4.6.6)
Truncated octahedron

(Animation)

Truncated octahedron.png Truncated octahedron flat.png 14 6 squares
8 hexagons
36 24 Oh
rhombicuboctahedron
or small rhombicuboctahedron
(3.4.4.4 )
Rhombicuboctahedron
(Animation)
Small rhombicuboctahedron.png Rhombicuboctahedron flat.png 26 8 triangles
18 squares
48 24 Oh
truncated cuboctahedron
or great rhombicuboctahedron
(4.6.8)
Truncated cuboctahedron
(Animation)
Great rhombicuboctahedron.png Truncated cuboctahedron flat.svg 26 12 squares
8 hexagons
6 octagons
72 48 Oh
snub cube
or snub hexahedron
or snub cuboctahedron
(2 لا انطباقية forms)
(3.3.3.3.4)
Snub hexahedron (Ccw)
(Animation)
Snub hexahedron (Cw)
(Animation)
Snub hexahedron.png Snub cube flat.svg 38 32 triangles
6 squares
60 24 O
icosidodecahedron
(3.5.3.5)
Icosidodecahedron
(Animation)
Icosidodecahedron.png Icosidodecahedron flat.svg 32 20 triangles
12 خماسي أضلاعs
60 30 Ih
truncated dodecahedron
(3.10.10)
Truncated dodecahedron
(Animation)
Truncated dodecahedron.png Truncated dodecahedron flat.png 32 20 triangles
12 عشاري أضلاعs
90 60 Ih
عشروني أوجه مقطع الرؤوس
(5.6.6 )
Truncated icosahedron
(Animation)
Truncated icosahedron.png Truncated icosahedron flat-2.svg 32 12 pentagons
20 hexagons
90 60 Ih
rhombicosidodecahedron
or small rhombicosidodecahedron
(3.4.5.4)
Rhombicosidodecahedron
(Animation)
Small rhombicosidodecahedron.png Rhombicosidodecahedron flat.png 62 20 triangles
30 squares
12 pentagons
120 60 Ih
truncated icosidodecahedron
or great rhombicosidodecahedron
(4.6.10)
Truncated icosidodecahedron
(Animation)
Great rhombicosidodecahedron.png Truncated icosidodecahedron flat.svg 62 30 squares
20 hexagons
12 decagons
180 120 Ih
snub dodecahedron
or snub icosidodecahedron
(2 لا انطباقية forms)
(3.3.3.3.5)
Snub dodecahedron (Ccw)
(Animation)
Snub dodecahedron (Cw)
(Animation)
Snub dodecahedron ccw.png Snub dodecahedron flat.svg 92 80 triangles
12 pentagons
150 60 I

بعض التعاريف من semiregular polyhedron تشمل واحدة أكثر شخصية، ، the elongated square gyrobicupola or "pseudo-rhombicuboctahedron".[2]

خصائص

عدد الرؤوس هو 720 درجة مقسومة على قمة الرأس . وهذه هي المواد الصلبة وجها موحدا مع القمم العادية.

مقالات ذات صلة

الملاحظات

  1. Field J., Rediscovering the Archimedean Polyhedra: Piero della Francesca, Luca Pacioli, Leonardo da Vinci, Albrecht Dürer, Daniele Barbaro, and Johannes Kepler,Archive for History of Exact Sciences, 50, 1997, 227
  2. Malkevitch (1988), p. 85

المراجع

  • Jayatilake, Udaya (2005). "Calculations on face and vertex regular polyhedra". Mathematical Gazette. 89 (514): 76–81.
  • (Section 3-9)
  • Malkevitch, Joseph (1988), "Milestones in the history of polyhedra", in Senechal, M.; Fleck, G. (المحررون), Shaping Space: A Polyhedral Approach, Boston: Birkhäuser, صفحات 80–92 .

وصلات خارجية


موسوعات ذات صلة :