الرئيسيةعريقبحث

وتر دائرة


☰ جدول المحتويات


هذه المقالة عن الوتر في الرياضيات والهندسة. لتصفح عناوين مشابهة، انظر وتر (توضيح).
الضلع الأحمر والأسود يُعدّان وترَيْنِ في الدائرة. ويُسمَّى الوتَرُ المارُّ بنُقطةِ المركز قطراً في الدائرة.

وَتَرُ الدائرةِ هو قطعة مستقيمة واصلةٌ بين نقطتين على الدائرة. يُسمّى أطولُ وترٍ في الدائرةِ قُطراً. بينما الخطُّ القاطع هو امتدادٌ لانهائيٌّ للوتر. يُعمّمُ تعريف الوَترُ ليشملَ أيّ منحنىً بإعادة صياغته على أنه قطعة مستقيمة واصلة بين نقطتين على منحنىً.

الخصائص والمبرهنات

طول الوتر

تُعطى صيغة طول الوتر بدلالة نصف قطر دائرته المحيطه وزاوية القوس الذي يحصرها: :

مبرهنة — طول أي وتر داخل الدائرة لا يزيد عن طول القطر.

مبرهنة — أطوال أوتار الدائرة الواحدة تتساوى إذا وفقط إذا تساوت قياسات أقواسهما المتناظرة.

مبرهنة — مبرهنة: الوتر الأكبر يحصر قوساً ذا قياسٍ أكبر من قياس القوس الذي يحصره الوتر الأصغر. والعكس صحيح.

مبرهنة — مبرهنة: الوتر الأكبر يبعد بعداً عن مركز الدائرة أقل من بعد الوتر الأصغر.


عمق الوتر

يُعطى عُمْقُ الوتر بالصيغة: .

في حساب المثلثات

أول من اكتشف دالة الوتر ووضع جداول خاصة بها هو العالم اليوناني أبرخش، تعَرَّف هذه الدالة بـ:

انظر أيضاً

مراجع

وصلات خارجية


موسوعات ذات صلة :