الرئيسيةعريقبحث

احتمالات مورس


☰ جدول المحتويات


احتمالات مورس ، أو امكانات مورس، التي سميت على اسم الفيزيائي فيليب م. مورس ، هي نموذج تفاعل بيني مناسب للطاقة الكامنة لجزيء ثنائي الذرة .

هو تقريب أفضل للبنية الاهتزازية للجزيء من المذبذب التوافقي الكمومي لأنه يتضمن آثار انكسار الروابط، مثل وجود حالات غير منضمة.

كما أنها تشكل اسنادات غير متناسقة واحتمالات انتقال غير صفرية .

يمكن أيضًا استخدام مورس لنمذجة تفاعلات أخرى مثل التفاعل بين ذرة وسطح معين. نظرًا لبساطته (ثلاث معلمات مناسبة فقط) ، لا يتم استخدامه في التحليل الطيفي الحديث.

يعتبر ايضا وظيفة الطاقة الكامنة الأكثر شيوعًا في الاستخدام لتركيب البيانات الطيفية.

وظيفة الطاقة الكامنة

إمكانات مورس (الأزرق) والمذبذب التوافقي (الأخضر). على عكس مستويات الطاقة لإمكانية المذبذب التوافقي ، والتي يتم تباعدها بالتساوي بواسطة by ، فإن تباعد مستوى مورس المحتمل ينخفض مع اقتراب الطاقة من طاقة التفكك. طاقة التفكك D e أكبر من الطاقة الحقيقية المطلوبة للتفكك D 0 بسبب طاقة نقطة الصفر لأدنى مستوى اهتزازي ( v = 0).

وظيفة مورس للطاقة الكامنة هي كالتالي

هنا هي المسافة بين الذرات، هي مسافة رابطة التوازن، هو العمق (محدد بالنسبة للذرات المنفصلة) يتحكم في "عرض" الإمكانات . يمكن حساب طاقة التفكك للاسنادات بطرح طاقة نقطة الصفر . يمكن العثور على ثابت القوة (الصلابة) للرابطة عن طريق توسع تايلور حول إلى المشتق الثاني لدالة الطاقة الكامنة، والتي يمكن من خلالها إظهار أن المعلمة، ، تكون

أي ان هو ثابت القوة عند الحد الأدنى .

نظرًا لأن صفرية الطاقة الكامنة هو أمر تعسفي ، يمكن إعادة كتابة معادلة جهد مورس بأي عدد من الطرق عن طريق إضافة أو طرح قيمة ثابتة. عندما يتم استخدامها لنمذجة التفاعل بين السطح والذرة، يمكن إعادة تعريف الطاقة صفر بحيث تصبح إمكانات مورس

الذي يكتب عادة هكذا

أي ان هي الآن إحداثيات متعامدة على السطح. يقترب هذا النموذج من الصفر اللانهائي ويساوي في الحد الأدنى، أي . يُظهر بوضوح أن إمكانات مورس هي مزيج من مصطلح نفور قصير المدى (الأول) ومصطلح جذب طويل المدى (الأخير) ، يماثل إمكانات لينارد جونز .

حالات وطاقات اهتزازية

مثل المذبذب التوافقي الكمومي ، يمكن العثور على طاقات وإمكانات مورس باستخدام طرق المشغل. [1] ينطوي أحد النهج على تطبيق طريقة العوامل على هاميلتون.

لكتابة الحالات الثابتة على إمكانات مورس، أي و و معادلة شرودنغر التالية:

من المناسب إدخال المتغيرات التالية:

بعد ذلك، تأخذ معادلة شرودنغر الشكل البسيط:

يمكن كتابة قيمها الذاتية و ال الحالات الخاصة على النحو التالي: [2]

أي

حيث تشير [x] إلى أكبر عدد صحيح أصغر من x.

أي و هو متعدد لغوير المعمم:

يوجد أيضًا التعبير التحليلي الهام التالي لعناصر المصفوفة لعامل الإحداثيات (هنا يُفترض و ) [3]

الطاقة الذاتية في المتغيرات الأولية بهذا الشكل:

أي ان هو عدد الذبذبات الكمية، و لديها وحدات من التردد، وهي مرتبطة رياضيا بكتلة الجسيمات، ، وثوابت مورس عبر

في حين أن تباعد الطاقة بين مستويات الاهتزاز في المذبذب التوافقي الكمومي ثابت عند ، الطاقة بين المستويات المجاورة تنخفض مع زيادة في مذبذب مورس. رياضيا، تباعد مستويات مورس

يطابق هذا الاتجاه عدم التناسق الموجود في الجزيئات الحقيقية. ومع ذلك، فشلت هذه المعادلة فوق بعض القيم مثل أي يتم حسابها على أنها صفر أو سلبية. على وجه التحديد:

جزء صحيح.

يرجع هذا الفشل إلى العدد المحدود من المستويات المقيدة في إمكانات مورس، وبعض الحدود القصوى من التي لا تزال ملزمة. للطاقات التي اعلى من ، يُسمح بجميع مستويات الطاقة الممكنة، لما المعادلة لم تعد صالحة.

أدناه ، هو تقريب جيد للبنية الاهتزازية الحقيقية في الجزيئات ثنائية الذرة غير الدورية. في الواقع، تتناسب الأطياف الجزيئية الحقيقية بشكل عام مع الشكل 1

الثوابت و يمكن أن تكون مرتبطة مباشرة بالمعلمات لاحتمالات مورس.

كما هو واضح من التحليل البعدي ، تستخدم المعادلة الأخيرة تدوينًا طيفيًا لأسباب تاريخية حيث يمثل انخفاض الموجة و ليس تردد زاوي بواسطة .

إمكانات مورس / بعيدة المدى

امتداد مهم لإمكانية مورس التي جعلت شكل مورس مفيدًا جدًا في التحليل الطيفي الحديث هو إمكانات MLR ( Morse / Long-range ). يتم استخدام إمكانات MLR كمعيار لتمثيل البيانات الطيفية و / أو للجزيئات الدياتومية بواسطة منحنى طاقة محتمل. تم استخدامه على N 2 ، [4] Ca 2 ، [5] KLi، [6] MgH، [7] العديد من الحالات الإلكترونية لـ Li 2 ، [8] [9] [10] [11] [12] Cs 2 ، [13] [14] Sr 2 ، [15] ArXe، [16] LiCa، [17] LiNa، [18] Br 2 ، [19] Mg 2 ، [20] HF، [21] [22] HCl، HBr، HI، MgD، [23] Be 2 ، [24] BeH، [25] و NaH. [26] يتم استخدام إصدارات أكثر تعقيدًا للجزيئات متعددة الذرات.

مقالات ذات صلة

المراجع

  • 1 كتيب CRC للكيمياء والفيزياء، Ed David R. Lide ، الطبعة 87 ، القسم 9 ، الثوابت الطيفية للجزيئات DIATOMIC pp.   9-82
  • Morse, P. M. (1929). "Diatomic molecules according to the wave mechanics. II. Vibrational levels". Phys. Rev. 34. صفحات 57–64. Bibcode:1929PhRv...34...57M. doi:10.1103/PhysRev.34.57.
  • Girifalco, L. A.; Weizer, G. V. (1959). "Application of the Morse Potential Function to cubic metals". Phys. Rev. 114 (3). صفحة 687. Bibcode:1959PhRv..114..687G. doi:10.1103/PhysRev.114.687.
  • Shore, Bruce W. (1973). "Comparison of matrix methods applied to the radial Schrödinger eigenvalue equation: The Morse potential". J. Chem. Phys. 59 (12). صفحة 6450. Bibcode:1973JChPh..59.6450S. doi:10.1063/1.1680025.
  • Keyes, Robert W. (1975). "Bonding and antibonding potentials in group-IV semiconductors". Phys. Rev. Lett. 34 (21). صفحات 1334–1337. Bibcode:1975PhRvL..34.1334K. doi:10.1103/PhysRevLett.34.1334.
  • Lincoln, R. C.; Kilowad, K. M.; Ghate, P. B. (1967). "Morse-potential evaluation of second- and third-order elastic constants of some cubic metals". Phys. Rev. 157 (3). صفحات 463–466. Bibcode:1967PhRv..157..463L. doi:10.1103/PhysRev.157.463.
  • Dong, Shi-Hai; Lemus, R.; Frank, A. (2001). "Ladder operators for the Morse potential". Int. J. Quantum Chem. 86 (5). صفحات 433–439. doi:10.1002/qua.10038.
  • Zhou, Yaoqi; Karplus, Martin; Ball, Keith D.; Bery, R. Stephen (2002). "The distance fluctuation criterion for melting: Comparison of square-well and Morse Potential models for clusters and homopolymers". J. Chem. Phys. 116 (5). صفحات 2323–2329. doi:10.1063/1.1426419.
  • IG Kaplan ، في كتيب الفيزياء الجزيئية وكيمياء الكم، وايلي، 2003 ، ص 207.
  1. F. Cooper, A. Khare, U. Sukhatme, Supersymmetry in Quantum Mechanics, World Scientific, 2001, Table 4.1
  2. Dahl, J.P.; Springborg, M. (1988). "The Morse Oscillator in Position Space, Momentum Space, and Phase Space" ( كتاب إلكتروني PDF ). J. Chem. Phys. 88 (7): 4535. Bibcode:1988JChPh..88.4535D. doi:10.1063/1.453761. مؤرشف من الأصل ( كتاب إلكتروني PDF ) في 8 يناير 2019.
  3. E. F. Lima and J. E. M. Hornos, "Matrix Elements for the Morse Potential Under an External Field", J. Phys. B: At. Mol. Opt. Phys. 38, pp. 815-825 (2005)
  4. Le Roy, R. J.; Y. Huang; C. Jary (2006). "An accurate analytic potential function for ground-state N2 from a direct-potential-fit analysis of spectroscopic data". Journal of Chemical Physics. 125 (16): 164310. Bibcode:2006JChPh.125p4310L. doi:10.1063/1.2354502. PMID 17092076.
  5. Le Roy, Robert J.; R. D. E. Henderson (2007). "A new potential function form incorporating extended long-range behaviour: application to ground-state Ca2". Molecular Physics. 105 (5–7): 663–677. Bibcode:2007MolPh.105..663L. doi:10.1080/00268970701241656.
  6. Salami, H.; A. J. Ross; P. Crozet; W. Jastrzebski; P. Kowalczyk; R. J. Le Roy (2007). "A full analytic potential energy curve for the a3Σ+ state of KLi from a limited vibrational data set". Journal of Chemical Physics. 126 (19): 194313. Bibcode:2007JChPh.126s4313S. doi:10.1063/1.2734973. PMID 17523810.
  7. Shayesteh, A.; R. D. E. Henderson; R. J. Le Roy; P. F. Bernath (2007). "Ground State Potential Energy Curve and Dissociation Energy of MgH". The Journal of Physical Chemistry A. 111 (49): 12495–12505. Bibcode:2007JPCA..11112495S. doi:10.1021/jp075704a. PMID 18020428.
  8. Le Roy, Robert J.; N. S. Dattani; J. A. Coxon; A. J. Ross; Patrick Crozet; C. Linton (25 November 2009). "Accurate analytic potentials for Li2(X) and Li2(A) from 2 to 90 Angstroms, and the radiative lifetime of Li(2p)". Journal of Chemical Physics. 131 (20): 204309. Bibcode:2009JChPh.131t4309L. doi:10.1063/1.3264688. PMID 19947682.
  9. Dattani, N. S.; R. J. Le Roy (8 May 2013). "A DPF data analysis yields accurate analytic potentials for Li2(a) and Li2(c) that incorporate 3-state mixing near the c-state asymptote". Journal of Molecular Spectroscopy. 268 (1–2): 199–210. arXiv:. Bibcode:2011JMoSp.268..199.. doi:10.1016/j.jms.2011.03.030.
  10. W. Gunton, M. Semczuk, N. S. Dattani, K. W. Madison, High resolution photoassociation spectroscopy of the 6Li2 A-state, https://arxiv.org/abs/1309.5870
  11. Semczuk, M.; Li, X.; Gunton, W.; Haw, M.; Dattani, N. S.; Witz, J.; Mills, A. K.; Jones, D. J.; Madison, K. W. (2013). "High-resolution photoassociation spectroscopy of the 6Li2 c-state". Phys. Rev. A. 87. صفحة 052505. arXiv:. Bibcode:2013PhRvA..87e2505S. doi:10.1103/PhysRevA.87.052505. مؤرشف من الأصل في 10 أبريل 2020.
  12. Le Roy, R. J.; C. C. Haugen; J. Tao; H. Li (February 2011). "Long-range damping functions improve the short-range behaviour of 'MLR' potential energy functions" ( كتاب إلكتروني PDF ). Molecular Physics. 109 (3): 435–446. Bibcode:2011MolPh.109..435L. doi:10.1080/00268976.2010.527304. مؤرشف من الأصل ( كتاب إلكتروني PDF ) في 8 يناير 2019.
  13. Xie, F.; L. Li; D. Li; V. B. Sovkov; K. V. Minaev; V. S. Ivanov; A. M. Lyyra; S. Magnier (2011). "Joint analysis of the Cs2 a-state and 1 g (33Π1g ) states". Journal of Chemical Physics. 135 (2): 02403. Bibcode:2011JChPh.135b4303X. doi:10.1063/1.3606397. PMID 21766938.
  14. Coxon, J. A.; P. G. Hajigeorgiou (2010). "The ground X 1Σ+g electronic state of the cesium dimer: Application of a direct potential fitting procedure". Journal of Chemical Physics. 132 (9): 094105. Bibcode:2010JChPh.132i4105C. doi:10.1063/1.3319739. PMID 20210387.
  15. Stein, A.; H. Knockel; E. Tiemann (April 2010). "The 1S+1S asymptote of Sr2 studied by Fourier-transform spectroscopy". The European Physical Journal D. 57 (2): 171–177. arXiv:. Bibcode:2010EPJD...57..171S. doi:10.1140/epjd/e2010-00058-y.
  16. Piticco, Lorena; F. Merkt; A. A. Cholewinski; F. R. W. McCourt; R. J. Le Roy (December 2010). "Rovibrational structure and potential energy function of the ground electronic state of ArXe". Journal of Molecular Spectroscopy. 264 (2): 83–93. Bibcode:2010JMoSp.264...83P. doi:10.1016/j.jms.2010.08.007.
  17. Ivanova, Milena; A. Stein; A. Pashov; A. V. Stolyarov; H. Knockel; E. Tiemann (2011). "The X2Σ+ state of LiCa studied by Fourier-transform spectroscopy". Journal of Chemical Physics. 135 (17): 174303. Bibcode:2011JChPh.135q4303I. doi:10.1063/1.3652755. PMID 22070298.
  18. Steinke, M.; H. Knockel; E. Tiemann (27 April 2012). "X-state of LiNa studied by Fourier-transform spectroscopy". Physical Review A. 85 (4): 042720. Bibcode:2012PhRvA..85d2720S. doi:10.1103/PhysRevA.85.042720.
  19. Yukiya, T.; N. Nishimiya; Y. Samejima; K. Yamaguchi; M. Suzuki; C. D. Boonec; I. Ozier; R. J. Le Roy (January 2013). "Direct-potential-fit analysis for the system of Br2". Journal of Molecular Spectroscopy. 283: 32–43. Bibcode:2013JMoSp.283...32Y. doi:10.1016/j.jms.2012.12.006.
  20. Knockel, H.; S. Ruhmann; E. Tiemann (2013). "The X-state of Mg2 studied by Fourier-transform spectroscopy". Journal of Chemical Physics. 138 (9): 094303. Bibcode:2013JChPh.138i4303K. doi:10.1063/1.4792725. PMID 23485290.
  21. Li, Gang; I. E. Gordon; P. G. Hajigeorgiou; J. A. Coxon; L. S. Rothman (July 2013). "Reference spectroscopic data for hydrogen halides, Part II:The line lists". Journal of Quantitative Spectroscopy & Radiative Transfer. 130: 284–295. Bibcode:2013JQSRT.130..284L. doi:10.1016/j.jqsrt.2013.07.019.
  22. Coxon, John A.; Hajigeorgiou, Photos G. (2015). "Improved direct potential fit analyses for the ground electronic states of the hydrogen halides: HF/DF/TF, HCl/DCl/TCl, HBr/DBr/TBr and HI/DI/TI". Journal of Quantitative Spectroscopy and Radiative Transfer. 151: 133–154. Bibcode:2015JQSRT.151..133C. doi:10.1016/j.jqsrt.2014.08.028.
  23. Henderson, R. D. E.; A. Shayesteh; J. Tao; C. Haugen; P. F. Bernath; R. J. Le Roy (4 October 2013). "Accurate Analytic Potential and Born–Oppenheimer Breakdown Functions for MgH and MgD from a Direct-Potential-Fit Data Analysis". The Journal of Physical Chemistry A. 117 (50): 13373–87. Bibcode:2013JPCA..11713373H. doi:10.1021/jp406680r. PMID 24093511. مؤرشف من الأصل في 11 مايو 2020.
  24. Meshkov, Vladimir V.; Stolyarov, Andrey V.; Heaven, Michael C.; Haugen, Carl; Leroy, Robert J. (2014). "Direct-potential-fit analyses yield improved empirical potentials for the ground XΣg+1 state of Be2". The Journal of Chemical Physics. 140 (6): 064315. doi:10.1063/1.4864355. PMID 24527923.
  25. Dattani, Nikesh S.; Le Roy, Robert J. (2015). "Beryllium monohydride (BeH): Where we are now, after 86 years of spectroscopy". Journal of Molecular Spectroscopy. 311: 76–83. arXiv:. Bibcode:2015JMoSp.311...76D. doi:10.1016/j.jms.2014.09.005.
  26. Walji, Sadru-Dean; Sentjens, Katherine M.; Le Roy, Robert J. (2015). "Dissociation energies and potential energy functions for the ground X 1Σ+ and "avoided-crossing" A 1Σ+ states of NaH". The Journal of Chemical Physics. 142 (4): 044305. Bibcode:2015JChPh.142d4305W. doi:10.1063/1.4906086. PMID 25637985.

موسوعات ذات صلة :