في الهندسة الرياضية، خط سيمسون (Simson line) هو مستقيمٌ يمُرّ بمساقط نقطةٍ مشتركةٍ مع مثلثٍ في دائرته المحيطة على أضلاعه. رياضياً: إذا كان مثلثاً ذو دائرةٍ محيطةٍ والنّقطةُ واقعةٌ عليها ومساقطها على مستقيمات المثلث هي على الترتيب، فإنّ النقاط هي نقاطٌ متسامتةٌ ويُسمّى خطّها خط سيمسون. كما أنَّ عكسَ النظريةِ صحيحٌ أيضاً؛ إذا تسامتت مساقطُ نقطةٍ على أضلاع مثلث، فلا بدَّ أنَّ تقع هذه النقطة على دائرة المثلث المحيطة. بالإمكان التعبير عن ذلك أيضاً بأنَّ نقطةً ينعدمُ عندها مثلث المساقط إذا وفقط إذا وقعت على دائرته المحيطة.[1][2][3]
البرهان
بالإمكان إثبات وجود خط سيمسون لأيّ نقطةٍ تقع على محيطةِ مثلثٍ عبر الزوايا الناتجة عن الرباعيات الدائرية. حتى تقع النقاط على استقامةٍ واحدةٍ، فإنَّ هذا يعني أنّ الزاويتين: . ولأن الرباعيَّ دائريٌّ فإنَّ ، من مجموع الزوايا المتقابلة للرباعي فإنّه أيضاً رباعي دائري، إذن: وكنتيجة: . الآن رباعي دائري أيضاً للتبرير السابق نفسه. وهكذا:. أخيراً: .[3]
انظر أيضاً
مراجع
- "William Wallace (1768 - 1843)" en. مؤرشف من الأصل في 01 أكتوبر 201815 مارس 2020.
- "Gibson History 7 - Robert Simson". 2008-01-30. مؤرشف من الأصل في 09 أكتوبر 2016.
- Todor Zaharinov, "The Simson triangle and its properties", Forum Geometricorum 17 (2017), 373--381. http://forumgeom.fau.edu/FG2017volume17/FG201736.pdf