الرئيسيةعريقبحث

مكان ثنائي الأبعاد


☰ جدول المحتويات


نظام الإحداثيات الديكارتي ثنائي الأبعاد

التفاصيل

الفضاء ثنائي الأبعاد هو نموذج هندسي للإسقاط المستوي للكون المادي الذي نعيش فيه.[1][2][3] ويطلق على البعدين عادة اسم الطول والعرض. ويقع الاتجاهان في نفس المستوى.

في الفيزياء و الرياضيات، المتتالي للقيمة n أرقام يمكن أن يفهم على أنه موقع في n-البعد الفضائي. عندما تكون n = 2، فإن مجموعة جميع هذه المواقع تسمى فضاء إقليديًا ثنائي الأبعاد أو فضاء إقليديًا ذا بعدين.

في الفيزياء، ينظر إلى الفضاء ثنائي الأبعاد كتمثيل مستوٍ للفضاء الذي نتحرك فيه، ويوصف على أنه فضاء ثنائي الأبعاد أو فضاء ذو بعدين.

الهندسة ثنائية الأبعاد

متعدد الرؤوس

في بعدين، يوجد عدد غير محدود من الأشكال متعددة الرؤوس المنتظمة: المضلعات. فيما يلي بعض منها:

المحدب

يمثل الرمز الاسكلافلي {p} متعدد رؤوس منتظمًا

الشكل المنحرف (الكروي)

يمكن اعتبار المضلع الأحادي المنتظم {1} والمضلع الثنائي المنتظم {2} مضلعين منحرفين منظمين. ويمكن أن يتواجدا بشكل غير منحرف في الفضاءات غير الإقليدية كما في سطح الكرة أو الطارة.

غير المحدب

يوجد عدد غير منتهٍ من المضلعات المنتظمة غير المحدبة في الفضاء ثنائي الأبعاد، حيث تتكون الرموز الاسكلافلية من عدد كسري {n/m}. ويطلق عليها المضلعات النجمية ولها نفس ترتيب زوايا المضلعات المنتظمة المحدبة.

بشكل عام، لأي عدد طبيعي n، هناك رؤوس n- نجمية غير محدبة مضلعة ومنتظمة برموز اسكلافلية {n/m} ولكل m مثل هذه <n/2 (strictly speaking {n/m}={n/(n-m)}) and m and n are أعداد أولية فيما بينها.

Hypersphere

Circle - Arabic.png

The هايبرسفير in 2 dimensions is a دائرة, sometimes called a 1-sphere because its surface is one-dimensional. Its area is

حيث نصف القطر.

النظم الإحداثية في الفضاء ثنائي الأبعاد

تعد النظم الإحداثية الأكثر انتشارًا هي نظام الإحداثيات الديكارتي، و نظام الإحداثيات القطبية ونظام الإحداثيات الجغرافية.

مقالات ذات صلة

المصادر

  1. M.R. Spiegel; S. Lipschutz; D. Spellman (2009). Vector Analysis (Schaum’s Outlines) (الطبعة 2nd). McGraw Hill.  .
  2. "Analytic geometry". Encyclopædia Britannica (الطبعة Encyclopædia Britannica Online). 2008.
  3. Trudeau, Richard J. (1993). Introduction to Graph Theory (الطبعة Corrected, enlarged republication.). New York: Dover Pub. صفحة 64.  . مؤرشف من الأصل في 5 مايو 201908 أغسطس 2012. Thus a planar graph, when drawn on a flat surface, either has no edge-crossings or can be redrawn without them.

موسوعات ذات صلة :