النُّحَاسُ الأَصْفَرُ[1] أو الصُّفْرُ[1] أي سبيكة من النحاس والزنك. ويمكن أن تتفاوت نسبتهما لتعطي مجموعة من السبائك مختلفة الخواص [2]. والبرونز، بمقارنة النحاس الأصفر، هو سبيكة النحاس مع القصدير[3]. إلا أن البعض، مع وجود هذا الفرق، يطلق على النحاس الأصفر اسم البرونز، والعكس صحيح[4]. يستخدم الصفر في الزخارف بسبب مظهره الذهبي اللامع، وفي التطبيقات التي تتضمن بعض الاحتكاك الطفيف مثل الأقفال، والمسننات، والمدحرجات، ومقابض الأبواب، الذخائر الحربية، والصمامات. كما يستخدم في السمكرة والاستخدامات الكهربائية، ويستخدم بكثرة في الأدوات الموسيقية مثل البوق، والأجراس بسبب خواصها الصوتية. كما يستخدم في سحابات البنطلونات (السُسْتة) . ولأن النحاس الأصفر أطرى من المعادن الأخرى عموما، فإنه يستخدم غالبا في الأماكن التي يتجنب فيها حدوث شرار نتيجة الاحتكاك، كما في الأجهزة والمعدات المحيطة بالغازات المتفجرة[5].
الخواص
يتمتع النحاس الأصفر بقدرة تحمل أعلى من البرونز أو الزنك. تنخفض نقطة انصهار النحاس الأصفر نسبيًا (900 إلى 940 درجة مئوية، من 1,650 إلى 1,720 درجة فهرنهايت، اعتمادًا على التركيبة) مما سجعلها مادة سهلة نسبيًا للتشكيل. يمكن تغيير خصائص النحاس الأصفر من خلال تغيير نسب النحاس والزنك، مما يسمح بصنع النحاس الأصفر الصلب واللين. كثافة النحاس الأصفر هي 8.4 إلى 8.73 جرام لكل سنتيمتر مكعب (0.303 إلى 0.315 رطل / بوصة مكعبة).[6]
يتم تدوير ما يقرب من 90 ٪ من جميع سبائك النحاس الأصفر اليوم.[7] لوأن النحاس معدن يتمتع بخصائص غير مغناطيسية، فيمكن فصله عن الخردة الحديدية عن طريق تمرير الخردة بالقرب من مغناطيس قوي. يتم جمع خردة النحاس ونقلها إلى مسبك حيث يتم صهرها وإعادة صهرها إلى قوالب. يتم تسخين القوالب وطرحها في الشكل والحجم المطلوب. تعني نعومة النحاس الأصفر أنه غالبًا ما يمكن تشكيله بدون استخدام سائل القطع، على الرغم من وجود استثناءات لهذا.[8]
يجعل الألومنيوم النحاس الأصفر أقوى وأكثر مقاومة للتآكل. يوفر الألومنيوم أيضًا طبقة صلبة مفيدة للغاية من أكسيد الألومنيوم (Al2O3) التي يتم تشكيلها على السطح وهي رقيقة وشفافة للغاية. ستمتع القصدير بتأثير مماثل ويُستخدم خاصةً في تطبيقات مياه البحر. يجعل مزيج الحديد والألومنيوم والسيليكون والمنغنيز النحاس الأصفر مقاومًا لعملية التآكل.[9]
استخدامه في مبيدات الجراثيم والمواد المضادة للميكروبات
لوحظت خصائص النحاس الأصفر المُبيدة للجراثيم لعدة قرون، ولا سيما في البيئات البحرية حيث تمنع الطاعون الحيوي.، يقتل النحاس الميكروبات في غضون بضع دقائق إلى ساعات من الاستخدام اعتمادًا على نوع وتركيز العوامل الممرضة والوسط الذي توجد فيه . [10][11][12]
يؤكد عدد كبير من الدراسات المستقلة[10][13][14][15][16][17][18] هذا التأثير المضاد للميكروبات، حتى ضد البكتيريا المقاومة للمضادات الحيوية مثل المكورة العنقودية المقاومة للميثيسلين والفانكوميسن MRSA و VRSA. لا تزال آليات العمل المضاد للميكروبات للنحاس وسبائكه، بما في ذلك النحاس الأصفر، محل العديد من الدراسات والتحقيقات المكثفة والمستمرة.[13][19][20]
التاريخ
على الرغم من استخدام أشكال من النحاس الأصفر منذ عصور ما قبل التاريخ،[21] إلا أنه لم يتم فهم طبيعته الحقيقية كسبيكة النحاس والزنك حتى فترة ما بعد القرون الوسطى بسبب تفاعل بخار الزنك مع النحاس الأصفر مما أدى إلى عدم الاعتراف بالنحاس كمعدن.[22] تشير نسخة الملك جيمس للكتاب المقدس إلى العديد من الإشارات إلى "النحاس".[23] يمكن أم يعني الشكل الإنجليزي الشكسبيري لكلمة 'نحاس أصفر ' أي سبيكة برونزية، أو نحاس، بدلاً من التعريف الحديث الدقيق للنحاس الأصفر. قد تكون السبائك القديمة سبائك طبيعية مصنوعة من صهر خامات النحاس الغنية بالزنك.[24] تم إنتاج النحاس الأصفر خلال العصر الروماني من النحاس المعدني ومعادن الزنك باستخدام عملية التوطيد، واستمر الاختلاف في هذه الطريقة حتى منتصف القرن التاسع عشر.[25] استُبدلت تلك الطريق في نهاية المطاف يتصنيع السبائك مباشرةً من النحاس ومعدن الزنك الذي تم إدخاله إلى أوروبا في القرن السادس عشر.[25]
سبائك الزنك النحاسية في وقت مبكر
اشتهر استخدام سبائك الزنك النحاسية المبكرة بأعداد صغيرة في غرب آسيا وشرق البحر الأبيض المتوسط والعديد من مواقع الألفية الثالثة قبل الميلاد في بحر إيجة والعراق والإمارات، وقلميقيا، وتركمانستان، وجورجيا ومن مواقع الألفية الثانية في غرب الهند، وأوزبكستان، وإيران، وسوريا، والعراق وكنعان.[26] ومع ذلك، اشتهرت سبائك الزنك النحاسية في الصين منذ أوائل الألفية الخامسة قبل الميلاد.[27]
تغيرت تركيبات هذه الأجسام "النحاسية" إلى حد كبير ويحتوي معظمها على محتويات من الزنك تتراوح بين 5٪ و 15٪ بالوزن وهو أقل مما هو عليه في النحاس النقي.[28] قد تكون هذه "السبائك الطبيعية" المصنعة تكونت عن طريق صهر خامات النحاس الغنية بالزنك في ظروف الأكسدة. كما يحتوي العديد منها على محتويات من القصدير مماثلة للمصنوعات البرونزية المعاصرة ومن المحتمل أن تكون بعض سبائك الزنك النحاسية عرضية وغير مُميزة عن النحاس.[28] ومع ذلك فإن العدد الكبير من سبائك النحاس والزنك المعروفة الآن تشير إلى أن بعضها على الأقل تم تصنيعه بشكل متعمد وأن العديد منها يحتوي على محتويات من الزنك تزيد على 12٪ بالوزن مما أدّى إلى لون ذهبي مميز.[28][29]
أشارت الكتابات المسمارية الآشورية في القرنين الثامن والسابع قبل الميلاد إلى استخدام "نحاس الجبال" وهذا قد يشير إلى النحاس "الطبيعي".[30][31] عُدّلت الترجمة اليونانية القديمة لهذا المصطلح إلى اللاتينية aurichalcum بمعنى "النحاس الذهبي" الذي أصبح المصطلح القياسي للنحاس.[32] عرّف أفلاطون النحاس في القرن الرابع قبل الميلادي النحاس على أنه معدن نادر وذي قيمة عالية مثل الذهب تقريبًا.[51] كما وصف بلينيوس الأكبر كيف أن النحاس الأصفر جاء من رواسب النحاس الخام القبرصي التي استُنفدت بحلول القرن الأول الميلادي.[33] تم العثور على فلورية الأشعة السينية من 39 سبيكة من سبائك الزنك النحاسية المستردة من حطام سفينة قديمة عمرها 2600 سنة قبالة صقلية ووُجدت أن السبيكة مصنوعة من 75-80 في المائة من النحاس، و 15-20 في المائة من الزنك ونسب مئوية صغيرة من النيكل، والرصاص والحديد.[34][35]
مراجع
- مجلة اللسان العربي، المجلد العاشر، الجزء الثالث، صفحة 150. المكتب الدائم لتنسيق التعريب في الوطن العربي، جامعة الدول العربية، الرباط، المغرب.
- Engineering Designer, v 30, n 3, May-June 2004, 6-9
- Machinery Handbook, Industrial Press Inc, New York, Edition 24, page 501
- Bearings and bearing metals, The Industrial Press, 1921, صفحة 29, مؤرشف من الأصل في 1 يناير 2017
- OSH Answers: Non-sparking tools - تصفح: نسخة محفوظة 02 يناير 2018 على موقع واي باك مشين.
- Walker, Roger. "Mass, Weight, Density or Specific Gravity of Different Metals". Density of Materials. United Kingdom: SImetric.co.uk. مؤرشف من الأصل في 31 ديسمبر 201809 يناير 2009.
brass – casting, 8400–8700... brass – rolled and drawn, 8430–8730
- M. F. Ashby; Kara Johnson (2002). Materials and design: the art and science of material selection in product design. Butterworth-Heinemann. صفحات 223–. . مؤرشف من الأصل في 16 مارس 202012 مايو 2011.
- Frederick James Camm (1949). Newnes Engineer's Reference Book. George Newnes. صفحة 594. مؤرشف من الأصل في 15 فبراير 2017.
- Copper Development Association. "Pub 117 The Brasses – Properties & Applications" ( كتاب إلكتروني PDF ). مؤرشف من الأصل ( كتاب إلكتروني PDF ) في 30 أكتوبر 201209 مايو 2012.
- EPA registers copper-containing alloy products, May 2008 نسخة محفوظة 29 أبريل 2015 على موقع واي باك مشين.
- Michel, James H., Moran, Wilton, R., Michels, Harold T., and Estelle, Adam A. (June 20, 2011). "Antimicrobial copper displaces stainless steel, germs for medical applications: Alloys have natural germ-killing properties". Tube and Pipe Journal. نسخة محفوظة 20 يوليو 2018 على موقع واي باك مشين.
- Noyce, J.O.; Michels, H.; and Keevil, C.W. (2006). "Potential use of copper surfaces to reduce survival of epidemic methicillin-resistant Staphylococcus aureus in the healthcare environment" (PDF). Journal of Hospital Infection. 63 (3): 289–297. doi:10.1016/j.jhin.2005.12.008. PMID 16650507. Archived from the original (PDF) on 2012-01-17. نسخة محفوظة 17 أغسطس 2013 على موقع واي باك مشين.
- Michel, James H., Moran, Wilton, R., Michels, Harold T., and Estelle, Adam A. (June 20, 2011). "Antimicrobial copper displaces stainless steel, germs for medical applications: Alloys have natural germ-killing properties". Tube and Pipe Journal. مؤرشف من الأصل في 07 أكتوبر 2018.
- Noyce, J.O.; Michels, H.; and Keevil, C.W. (2006). "Potential use of copper surfaces to reduce survival of epidemic methicillin-resistant Staphylococcus aureus in the healthcare environment" ( كتاب إلكتروني PDF ). Journal of Hospital Infection. 63 (3): 289–297. doi:10.1016/j.jhin.2005.12.008. PMID 16650507. مؤرشف من الأصل ( كتاب إلكتروني PDF ) في 17 يناير 2012.
- Schmidt, MG (2011). "Copper surfaces in the ICU reduced the relative risk of acquiring an infection while hospitalized". BMC Proceedings. 5: O53. doi:10.1186/1753-6561-5-S6-O53. PMC 3239467 . نسخة محفوظة 15 مارس 2020 على موقع واي باك مشين.
- "TouchSurfaces Clinical Trials: Home". coppertouchsurfaces.org. نسخة محفوظة 01 سبتمبر 2018 على موقع واي باك مشين.
- "355 Copper Alloys Now Approved by EPA as Antimicrobial". Appliance Magazine. June 28, 2011. نسخة محفوظة 29 مارس 2014 على موقع واي باك مشين.
- Kuhn, Phyllis J. (1983) Doorknobs: A Source of Nosocomial Infection? - تصفح: Archived February 16, 2012, at the واي باك مشين. Diagnostic Medicine نسخة محفوظة 26 أبريل 2015 على موقع واي باك مشين.
- Espίrito Santo, Christopher; Taudte, Nadine; Nies, Dietrich H.; and Grass, Gregor (2007). "Contribution of copper ion resistance to survival of Escherichia coli on metallic copper surfaces". Applied and Environmental Microbiology. 74 (4): 977–86. doi:10.1128/AEM.01938-07. PMC 2258564 . PMID 18156321. نسخة محفوظة 24 أكتوبر 2016 على موقع واي باك مشين.
- Santo, C. E.; Lam, E. W.; Elowsky, C. G.; Quaranta, D.; Domaille, D. W.; Chang, C. J.; Grass, G. (2010). "Bacterial Killing by Dry Metallic Copper Surfaces". Applied and Environmental Microbiology. 77 (3): 794–802. doi:10.1128/AEM.01599-10. PMC 3028699 . PMID 21148701. نسخة محفوظة 24 أكتوبر 2016 على موقع واي باك مشين.
- Thornton, C. P. (2007) "Of brass and bronze in prehistoric southwest Asia" in La Niece, S. Hook, D. and Craddock, P.T. (eds.) Metals and mines: Studies in archaeometallurgy London: Archetype Publications. (ردمك ) نسخة محفوظة 16 يونيو 2016 على موقع واي باك مشين.
- de Ruette, M. (1995) "From Contrefei and Speauter to Zinc: The development of the understanding of the nature of zinc and brass in Post Medieval Europe" in Hook, D.R. and Gaimster, D.R.M (eds) Trade and Discovery: The Scientific Study of Artefacts from Post Medieval Europe and Beyond London: British Museum Occasional Papers 109
- Cruden's Complete Concordance p. 55
- Craddock, P.T. and Eckstein, K (2003) "Production of Brass in Antiquity by Direct Reduction" in Craddock, P.T. and Lang, J. (eds) Mining and Metal Production Through the Ages London: British Museum pp. 226–7
- Rehren and Martinon Torres 2008, pp. 170–5
- Thornton 2007, pp. 189–201
- Zhou Weirong (2001). "The Emergence and Development of Brass Smelting Techniques in China". Bulletin of the Metals Museum of the Japan Institute of Metals. 34: 87–98. Archived from the original on 2012-01-25. نسخة محفوظة 17 أغسطس 2013 على موقع واي باك مشين.
- Craddock and Eckstein 2003 p. 217
- Thornton, C.P and Ehlers, C.B. (2003) "Early Brass in the ancient Near East" in IAMS Newsletter 23 pp. 27–36
- Bayley 1990, p. 8
- "orichalc – definition of orichalc in English from the Oxford dictionary". oxforddictionaries.com. مؤرشف من الأصل في 24 يونيو 2016.
- Craddock, P.T. (1978). "The Composition of Copper Alloys used by the Greek, Etruscan and Roman Civilisations: 3 The Origins and Early Use of Brass". Journal of Archaeological Science. 5: 1–16 (8). doi:10.1016/0305-4403(78)90015-8.
- Pliny the Elder Historia Naturalis XXXIV 2
- "Atlantis' Legendary Metal Found in Shipwreck". DNews. مؤرشف من الأصل في 17 مايو 2016.
- Jessica E. Saraceni. "Unusual Metal Recovered from Ancient Greek Shipwreck – Archaeology Magazine". archaeology.org. مؤرشف من الأصل في 20 يوليو 2018.
مصادر
- Bayley, J. (1990) "The Production of Brass in Antiquity with Particular Reference to Roman Britain" in Craddock, P.T. (ed.) 2000 Years of Zinc and Brass London: British Museum
- Craddock, P.T. and Eckstein, K (2003) "Production of Brass in Antiquity by Direct Reduction" in Craddock, P.T. and Lang, J. (eds) Mining and Metal Production Through the Ages London: British Museum
- Day, J. (1990) "Brass and Zinc in Europe from the Middle Ages until the 19th century" in Craddock, P.T. (ed.) 2000 Years of Zinc and Brass London: British Museum
- Day, J (1991) "Copper, Zinc and Brass Production" in Day, J and Tylecote, R.F (eds) The Industrial Revolution in Metals London: The Institute of Metals
- Martinon Torres, M. & Rehren, T. (2002). "Agricola and Zwickau: theory and practice of Renaissance brass production in SE Germany". Historical Metallurgy. 36 (2): 95–111.
- Rehren, T. and Martinon Torres, M. (2008) "Naturam ars imitate: European brassmaking between craft and science" in Martinon-Torres, M and Rehren, T. (eds) Archaeology, History and Science Integrating Approaches to Ancient Material: Left Coast Press