الرئيسيةعريقبحث

باقي تربيعي


الباقي التربيعي في الحسابيات المعيارية، نقول بأن عددا صحيحا طبيعيا q هو باق تربيعي بترديد p إذا وجد عدد صحيح x بحيث

مراجع

The استفسارات حسابية has been translated from Gauss's Ciceronian Latin into English and German. The German edition includes all of his papers on number theory: all the proofs of quadratic reciprocity, the determination of the sign of the Gauss sum, the investigations into biquadratic reciprocity, and unpublished notes.

  • Gauss, Carl Friedrich; Clarke, Arthur A. (translator into English) (1986), Disquisitiones Arithemeticae (الطبعة Second corrected), New York: سبرنجر,  
  • Gauss, Carl Friedrich; Maser, H. (translator into German) (1965), Untersuchungen über hohere Arithmetik [Disquisitiones Arithemeticae & other papers on number theory] (الطبعة second), New York: Chelsea,  
  • Bach, Eric; Shallit, Jeffrey (1996), Efficient Algorithms, I, Cambridge: The MIT Press,  
  • Crandall, Richard; Pomerance, Carl (2001), Prime Numbers: A Computational Perspective, New York: Springer,  
  • Davenport, Harold (2000), Multiplicative Number Theory (الطبعة third), New York: Springer,  
  • Garey, Michael R.; Johnson, David S. (1979), , W. H. Freeman,   A7.1: AN1, pg.249.
  • Hardy, G. H.; Wright, E. M. (1980), (الطبعة fifth), Oxford: دار نشر جامعة أكسفورد,  
  • Ireland, Kenneth; Rosen, Michael (1990), A Classical Introduction to Modern Number Theory (الطبعة second), New York: Springer,  
  • Lemmermeyer, Franz (2000), Reciprocity Laws: from Euler to Eisenstein, Berlin: Springer,  
  • Manders, Kenneth L.; Adleman, Leonard (1978), "NP-Complete Decision Problems for Binary Quadratics", Journal of Computer and System Sciences, 16, صفحات 168–184, doi:10.1016/0022-0000(78)90044-2

وصلات خارجية

موسوعات ذات صلة :