الرئيسيةعريقبحث

زمرة دائرية


☰ جدول المحتويات


ميّز عن زمرة الدائرة.

في نظرية الزمر، يُقال عن زمرة أنها دائرية (Cyclic group)‏ إذا كان من الممكن توليدها عن طريق عنصر وحيد، فإذا كانت الزمرة تحوي عنصراً a (ويسمى مولد الزمرة) وكانت العملية المعرفة عليها هي الجداء، فإن أي عنصر من هذه الزمرة يمكن كتابته قوةً للعنصر a، أما إذا كانت العملية المعرفة هي الجمع فإن جميع العناصر يجب أن تكون من مضاعفات العنصر a.[1]

تعريف

الجذور العقدية الست من الدرجة السادسة للوحدة تكون زمرة دائرية في إطار عملية الضرب. يعتبر z عنصرا بدائيا بينما z2 ليس كذلك لأن القوى الفردية ل z ليست قوى ل z2.

خصائص

تكون زمرة G ما دائرية إذا وجد عنصر g من G حيث كل عناصر الزمرة G تُكتب على شكل gn حيث n عدد صحيح.

أمثلة

تمثيل الزمر الدائرية

GroupDiagramMiniC1.svg
GroupDiagramMiniC2.svg
GroupDiagramMiniC3.svg
GroupDiagramMiniC4.svg
GroupDiagramMiniC5.svg
GroupDiagramMiniC6.svg
GroupDiagramMiniC7.svg
GroupDiagramMiniC8.svg
C1 C2 C3 C4 C5 C6 C7 C8

مراجع

  1. p. 126: "If G has two ends, the explicit structure of G is well known: G is an extension of a finite group by either the infinite cyclic group or the infinite dihedral group." نسخة محفوظة 26 مارس 2015 على موقع واي باك مشين.

مقالات ذات صلة

موسوعات ذات صلة :