من أجل التطرق إلى نظرية المجموعات في العلوم الاجتماعية، انظر إلى مجموعة اجتماعية.
في الرياضيات والجبر التجريدي، نظرية الزُمَر (Group Theory) هي فرع من الرياضيات يهتم بدراسة بُنى جبرية معروفة باسم الزمر وخواصها.[1][2][3] . مفهوم الزمرة مركزي بالنسبة إلى الجبر التجريدي إضافة إلى بُنى جبرية أخرى كالحلقة والحقل والفضاء المتجهي. الحلقات والحقول والفضاءات المتجهية كلهن زمر مزودةً بعمليات وموضوعات إضافية.
يُتطرق إلى نظرية الزمر في مجالات مختلفة من الرياضيات، كما أثرت الطرق المستعملة في نظرية الزمر في عدة فروع من الجبر. زمر الجبر الخطي وزمر لي هما فرعان من نظرية الزمر عرفا تطورات وصارا موضوعين للدراسة في حد ذاتهما.
تؤخذ زمر التماثل نموذجا عند دراسة العديد من الأنظمة الفيزيائية، البلورة وذرة الهيدروجين مثالتين على ذلك. لنظرية الزمر والعلم القريب منه نظرية التمثيل تطبيقات مهنة في الفيزياء والكيمياء وعلم المواد. نظرية الزمر مركزية عند دراسة التشفير باستخدام المفتاح العام.
انتُهي من تصنيف الزمر المنتهية البسيطة سنة 1980، متطلبا الأمرُ عن ما يزيد على عشرة آلاف صفحة من البحث.
التاريخ
- مقالة مفصلة: تاريخ نظرية الزمر
لنظرية الزمر ثلاثة جذور تاريخية هي: نظرية الأعداد ونظرية المعادلات الجبرية والهندسة الرياضية. ابتُدأ الفرع الآتي من نظرية الأعداد من طرف ليونهارد أويلر وطوره غاوس في عمله حول الحسابيات النمطية والزمر المجموعية والجداءية المتعلقة بالحقول التربيعية. النتائج الأولى حول زمر التبديلات حصل عليها كل من جوزيف لوي لاغرانج وباولو روفيني ونيلس هنريك أبيل، خلال محاولتهم حلحلة المعادلات الحدودية من درجات عالية.
أبدع إيفاريست غالوا مصطلح Groupe (زمرة) وأنشأ رابطا، معروف حاليا باسم نظرية غالوا، بين نظرية الزمر حديثة الولادة من جهة، ونظرية الحقول من جهة أخرى.
في الهندسة الرياضية، صارت الزمر مهمة في الهندسة الإسقاطية وفيما بعد في الهندسة غير الإقليدية. زعم فيليكس كلاين في عمل له يسمى برنامج إرلنغن نشره عام 1872، أن نظرية الزمر هي المبدأ المنظِم للهندسة الرياضية.
إيفاريست غالوا، في ثلاثينات القرن التاسع عشر هو أول من استعمل الزمر من أجل تحديد قابلية حلحلة المعادلات الحدودية من عدمه.
الأصناف الأساسية للزمر
- مقالات مفصلة: زمرة (رياضيات)
- لائحة المواضيع المتعلقة بنظرية الزمر
انظر إلى زمرة مصفوفات وإلى تمثيل الزمر.
زمر التبديلات
أول صنف من الزمر دُرس هو زمر التبديلات. لتكن X مجموعة ما، ولتكن G مجموعة من التقابلات من X إلى X (والمعروفة باسم تبديلات)، منغلقةً تحت عمليتي التركيب والعكس. G زمرة والعملية المعرِفة لها هي عملية تركيب التبديلات.
إذا كانت X تحوي n عنصرا وكانت G تتكون من جميع تبديلات X الممكنة، فإن G تسمى زمرة متماثلة. يُرمز إليها حينئذ Sn.
انظر إلى زمرة متناوبة.
زمر المصفوفات
الصنف الذي يأتي ثانيا من حيث الأهمية هو زمرة المصفوفات، أو ما يعرف بالزمر الخطية. لتكب G مجموعة من المصفوفات القابلة للعكس. انظر إلى زمرة تبديلات
فروع نظرية الزمر
نظرية الزمر المنتهية
- مقالة مفصلة: زمرة منتهية
انظر إلى تصنيف الزمر المنتهية البسيطة.
تمثيل الزمر
- مقالات مفصلة: تمثيل زمرة
- تمثيل زمرة منتهية
تطبيقات نظرية الزمر
تطبيقات نظرية الزمر كثيرة، فأغلب البُنى التي يتطرق إليها الجبر التجريدي هي حالات خاصة من الزمر. الحلقات على سبيل المثال، يمكن أن ينظر إليها على أنها زمر أبيلية (بقانون الجمع) إضافة إلى عملية ثانية تتمثل في الضرب أو الجداء.
نظرية الزمر الأولية
يمكن تعريف زمرة (G،*) :
G هي مجموعة و* عملية ثنائية تجميعية على G، تخضع للقواعد التالية (أو ما يدعى بدهيات):
- 1. (G،*) تملك انغلاقا، يعني أنه إذا كان a وb ضِمْنَ G فإن a*b يكون ضمن G أيضا
- 2. العملية * تجميعية، يعني أنه إذا كان a و b و c عناصر من G فإن (a*b)*c=a*(b*c).
- 3. G تحتوي على عنصر محايد، يرمز له غالبا ب e، يعني أنه مهما يكن a عنصر من G فإن: e*a=a*e=a.
- 4. كل عنصر من الزمرة (G,*) له عنصر معاكس، إذا كان a عنصر من G، فإنه يوجد عنصر b ضمن G بحيث يحقق: a*b=b*a=e.
نستنتج البدهيتين 1 و 2 تلقائياً من تعريف العملية الثنائية التجميعية لذلك يمكن إهمالهما.
ويتحقق مبدأ الحذف للزمرة (G,*) من جهة اليمين واليسار أي : a*b=a*c b=c هذا من جهة اليسار b*a=c*a b=c هذا من جهة اليمين
وكذلك المعادلة الخطية من الدرجة الأولى إذا كان كل من a و b ينتميان إلى G فإن a*x=b y*a=b لها حل وحيد في G
ويمكن القول أن الزمرة G تبادلية إذا كانت العملية الثنائية المعرفة عليها * تبادلية، عند إذ يطلق على الزمرة زمرة أبيلية (تبادلية): نسبة للعالم الذي اكتشفها.
في الزمرة G يوجد عنصر محايد وحيد e وكذلك معكوس وحيد a يحققان العلاقات التالية: e*x=x*e=x و a*x=x*a=e
مجموع مباشر للزمر
في نظرية الزمر، نقول عن الزمرة G أنها مجموع مباشر لمجموعة من الزمر الجزئية {Hi}:
إذا تحقق:
- جميع الزمر Hi هي زمر جزئية طبيعية من G.
- كل زوج من الزمر الجزئية لهما تقاطع ضئيل.
- {G = Hi} أي أن G تتشكل عن طريق جمع كافة الزمر الجزئية.
مقالات ذات صلة
المراجع
- "معلومات عن نظرية الزمر على موقع d-nb.info". d-nb.info. مؤرشف من الأصل في 15 ديسمبر 2019.
- "معلومات عن نظرية الزمر على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 27 أغسطس 2019.
- "معلومات عن نظرية الزمر على موقع psh.techlib.cz". psh.techlib.cz. مؤرشف من الأصل في 15 ديسمبر 2019.
مصادر
- رقم دولي معياري للكتاب:978-981-270-809-0; World Scientific 2007; Willi-Hans Steeb; Continuous Symmetries, Lie Algebras, Differential Equations And Computer Algebra
- Group Theory, W. R. Scott, Dover Publications,
- Groups, C. R. Jordan and D. A. Jordan, Newnes (Elsevier),