الشبكات الدماغية واسعة النطاق هي عبارة عن مجموعة مناطق دماغية واسعة الانتشار تُظهر اتصالا وظيفيا بينها، يمكن رصده بالتحليل الإحصائي لإشارة التصوير المغناطيسي الوظيفي،[1] أو طرق التسجيل الأخرى مثل تخطيط أمواج المداغ[2] تصوير مقطعي بالإصدار البوزيتروني[3] وتخطيط الدماغ المغناطيسي.[4]
ظهر في العلوم العصبية نموذج يقول بأن المهام الإدراكية لا تعالجها مناطق الدماغ بالعمل بشكل فردي منعزل عن بعضها البعض، ولكنها تعمل عن طريق شبكات عصبية تتكون من عدة مناطق دماغية منفصلة تشريحيا لكن يُعتقد أنها متصلة وظيفيا، بسبب النشاط المترابط والمتزامن بينها، ويمكن قياس هذا الاتصال الوظيفي عبر إشارات الدماغ الديناميكية،[5] كما يمكن أيضًا تحديد مناطق الدماغ المتزامنة باستخدام التحليل المكاني للمكونات المستقلة،
تختلف حالة المناطق الدماغية (المرتبطة ببعضها البعض عبر شبكة واسعة النطاق) باختلاف الوظيفة المعرفية،[6] فعندما تكون الحالة المعرفية غير بائنة (أي أن الشخص في حالة "راحة")، فإن الشبكة الدماغية واسعة النطاق تأخذ وضع الراحة، وبالنظر إلى الشبكات الدماغية واسعة النطاق كما لو كانت نظام مادي له خصائص شبيهة بالرسم البياني فإننا يمكن أن نجد لها عقد وحواف، ولا يمكن تحديدها ببساطة من خلال التنشيط المشترك لمناطق الدماغ.
أصبح تحليل شبكات الدماغ واسعة النطاق ممكنًا في العقود الأخيرة من خلال التقدم في تقنيات التصوير، بالإضافة إلى الأدوات الجديدة لنظرية الرسم البياني والأنظمة الديناميكية، وتُحدد شبكات الدماغ واسعة النطاق من خلال وظيفتها، وتوفر إطارًا متماسكًا لفهم الإدراك من خلال تقديم نموذج عصبي عن كيفية ظهور الوظائف المعرفية المختلفة عندما تتحد مناطق دماغية مختلفة معًا كائتلافات (تكتلات) ذاتية التنظيم.
يختلف تحديد هذه الائتلافات (التكتلات) باختلاف المقاييس المستخدمة لتشغيل خوارزمية تحليل المكونات المستقلة،[7] والتي يمكن أن تؤدي إلى عدد مختلف من الشبكات، حيث ادعت أحد النماذج أنه لا يوجد سوى شبكة الوضع الافتراضي والشبكة الإيجابية للمهمة، لكن معظم التحليلات الحالية تُظهر وجود العديد من الشبكات (انظر أسفل)
لوحظ أيضا وجود اضطراب في خوارزمية تحليل المكونات المستقلة لنشاط الشبكات المختلفة في بعض الأمراض النفسية والعصبية مثل الاكتئاب، الزهايمر، اضطراب طيف التوحد، الفصام،والاضطراب ثنائي القطب.[8]
الشبكات
أمكن تحديد الشبكات الست التالية من خلال ثلاث دراسات على الأقل.
الوضع الافتراضي
تنشط شبكة الوضع الافتراضي عندما يكون الفرد مستيقظًا لكنه في حالة راحة، كما تنشط بشكل تفضيلي عندما يركز الشخص على مهمة موجهة نحو داخله مثل أحلام اليقظة وتصور المستقبل واسترجاع الذكريات ونظرية العقل، وترتبط ارتباطًا سلبيًا بأنظمة الدماغ التي تركز على الإشارات البصرية الخارجية، وتُعتبر هذه الشبكة هي أكثر الشبكات بحثًا.[5][9][10][1][11][12][13][14][15]
الانتباه الظهري
تشارك هذه الشبكة في الانتشار الإرادي للانتباه وإعادة توجيه الأحداث غير المتوقعة.[1][11][12][14][15][16][17] وفيها يؤثر التلم داخل الفص الجداري والمجال الأمامي لرؤية العين على مناطق الرؤية في الدماغ. ويسمح هذا التأثير بتوجيه الانتباه.[18]
الانتباه البطني:[12][16][14][15][17]
ينشط في هذه الشبكة ثلاث مناطق دماغية وهي: القشرة البصرية والموصل الصدغي الجداري والقشرة الأمامية البطنية، وتستجيب هذه المناطق عندما تحدث محفزات ذات الصلة بالسلوك بشكل غير متوقع.[16] كما قد يحدث تثبيط لهذه الشبكة أثناء الانتباه المركز الذي تُستخدم فيه المعالجة من أعلى لأسفل، مثل قيام المرء بالبحث بمجرد النظر عن شيء ما، وهذا بدوره يساهم في حماية الانتباه الموجه نحو الهدف من التشتيت بإشارات أخرى غير ذات صلة، وتنشط الشبكة مرة أخرى عند العثور على الهدف أو العثور على معلومات ذات الصلة به.[19]
التميز (البروز، الأهمية)
تتكون شبكة التميز من العديد من التراكيب الدماغية، منها الفص الجزيري والقشرة الحزامية الأمامية الظهرية، وثلاثة تراكيب تحت قشرية وهي الجسم المخطط البطني والمادة السوداء والمنطقة السقيفية البطنية.[20][21] وتلعب هذه الشبكة دورا رئيسيا في رصد تميز الإشارات الخارجية وأحداث الدماغ الداخلية.[1][5][9][11][13][14][15] بعبارة أخرى فهذه الشبكة تساعد في توجيه الانتباه عبر تحديد الأحداث البيولوجية والمعرفية الهامة.
الجبهية الجدارية:[14][15][9][22]
تُنشأ هذه الشبكة التحكم المعرفي وتعدله، وتضم هذه الشبكة 18 منطقة فرعية من الدماغ.[23] وهناك علاقة قوية بين نسبة الذكاء وتشارك هذه الشبكة مع الشبكات الأخرى.[24]
بصرية جانبية
وتُعتبر هذه الشبكة مهمة في الإشارات العاطفية المعقدة.[11][12][13]
كما عُين عدد من شبكات الدماغ الأخرى: السمعية،[11][13] الحركية، التنفيذية اليمنى، الوضع الافتراضي الخلفي، اليسار الأمامي الجداري،[12] المخيخ، الانتباه المكاني،[1][5] الانتباه،[9] اللغة،[17] التنفيذية اليسرى، شبكة الاستشعار الحركي، المحرك الجسدي،[14][15] البصرية، الزمانية، الحوفية، الإدراكية البصرية، والصور المرئية.
المراجع
- Riedl, Valentin; Utz, Lukas; Castrillón, Gabriel; Grimmer, Timo; Rauschecker, Josef P.; Ploner, Markus; Friston, Karl J.; Drzezga, Alexander; Sorg, Christian (January 12, 2016). "Metabolic connectivity mapping reveals effective connectivity in the resting human brain". PNAS. 113 (2): 428–433. Bibcode:2016PNAS..113..428R. doi:10.1073/pnas.1513752113. PMID 26712010.
- Foster, Brett L.; Parvizi, Josef (2012-03-01). "Resting oscillations and cross-frequency coupling in the human posteromedial cortex". NeuroImage. 60 (1): 384–391. doi:10.1016/j.neuroimage.2011.12.019. ISSN 1053-8119. PMID 22227048.
- Buckner, Randy L.; Andrews‐Hanna, Jessica R.; Schacter, Daniel L. (2008). "The Brain's Default Network". Annals of the New York Academy of Sciences (باللغة الإنجليزية). 1124 (1): 1–38. doi:10.1196/annals.1440.011. ISSN 1749-6632. PMID 18400922.
- Morris, Peter G.; Smith, Stephen M.; Barnes, Gareth R.; Stephenson, Mary C.; Hale, Joanne R.; Price, Darren; Luckhoo, Henry; Woolrich, Mark; Brookes, Matthew J. (2011-10-04). "Investigating the electrophysiological basis of resting state networks using magnetoencephalography". Proceedings of the National Academy of Sciences (باللغة الإنجليزية). 108 (40): 16783–16788. doi:10.1073/pnas.1112685108. ISSN 0027-8424. PMID 21930901.
- Bressler, Steven L.; Menon, Vinod (June 2010). "Large scale brain networks in cognition: emerging methods and principles". Trends in Cognitive Sciences. 14 (6): 233–290. doi:10.1016/j.tics.2010.04.004. PMID 20493761. مؤرشف من الأصل في 06 مايو 201624 يناير 2016.
- Bressler, Steven L. (2008). "Neurocognitive networks". Scholarpedia. 3 (2): 1567. Bibcode:2008SchpJ...3.1567B. doi:10.4249/scholarpedia.1567.
- Abou Elseoud, Ahmed; Littow, Harri; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Nissilä, Juuso; Timonen, Markku; Tervonen, Osmo; Kiviniemi1, Vesa (2011-06-03). "Group-ICA Model Order Highlights Patterns of Functional Brain Connectivity". Frontiers in Systems Neuroscience. 5: 37. doi:10.3389/fnsys.2011.00037. PMID 21687724.
- Menon, Vinod (2011-09-09). "Large-scale brain networks and psychopathology: A unifying triple network model". Trends in Cognitive Sciences. 15 (10): 483–506. doi:10.1016/j.tics.2011.08.003. PMID 21908230. مؤرشف من الأصل في 20 مايو 2020.
- Bassett, Daniella; Bertolero, Max (July 2019). "How Matter Becomes Mind". Scientific American. 321 (1): 32. مؤرشف من الأصل في 18 مايو 202023 يونيو 2019.
- Buckner, Randy L. (2012-08-15). "The serendipitous discovery of the brain's default network". NeuroImage (باللغة الإنجليزية). 62 (2): 1137–1145. doi:10.1016/j.neuroimage.2011.10.035. ISSN 1053-8119. PMID 22037421.
- Yuan, Rui; Di, Xin; Taylor, Paul A.; Gohel, Suril; Tsai, Yuan-Hsiung; Biswal, Bharat B. (30 April 2015). "Functional topography of the thalamocortical system in human". Brain Structure and Function. 221 (4): 1971–1984. doi:10.1007/s00429-015-1018-7. PMID 25924563.
- Bell, Peter T.; Shine, James M. (2015-11-09). "Estimating Large-Scale Network Convergence in the Human Functional Connectome". Brain Connectivity. 5 (9): 565–74. doi:10.1089/brain.2015.0348. PMID 26005099.
- Heine, Lizette; Soddu, Andrea; Gomez, Francisco; Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven (2012). "Resting state networks and consciousness. Alterations of multiple resting state network connectivity in physiological, pharmacological and pathological consciousness states". Frontiers in Psychology. 3: 295. doi:10.3389/fpsyg.2012.00295. PMID 22969735.
- Yeo, B. T. Thomas; Krienen, Fenna M.; Sepulcre, Jorge; Sabuncu, Mert R.; Lashkari, Danial; Hollinshead, Marisa; Roffman, Joshua L.; Smoller, Jordan W.; Zöllei, Lilla (2011-09-01). "The organization of the human cerebral cortex estimated by intrinsic functional connectivity". Journal of Neurophysiology. 106 (3): 1125–1165. Bibcode:2011NatSD...2E0031H. doi:10.1152/jn.00338.2011. PMID 21653723.
- Shafiei, Golia; Zeighami, Yashar; Clark, Crystal A.; Coull, Jennifer T.; Nagano-Saito, Atsuko; Leyton, Marco; Dagher, Alain; Mišić, Bratislav (2018-10-01). "Dopamine Signaling Modulates the Stability and Integration of Intrinsic Brain Networks". Cerebral Cortex. 29 (1): 397–409. doi:10.1093/cercor/bhy264. PMID 30357316.
- Vossel, Simone; Geng, Joy J.; Fink, Gereon R. (2014). "Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles". The Neuroscientist. 20 (2): 150–159. doi:10.1177/1073858413494269. PMID 23835449.
- Hutton, John S.; Dudley, Jonathan; Horowitz-Kraus, Tzipi; DeWitt, Tom; Holland, Scott K. (1 September 2019). "Functional Connectivity of Attention, Visual, and Language Networks During Audio, Illustrated, and Animated Stories in Preschool-Age Children". Brain Connectivity. 9 (7): 580–592. doi:10.1089/brain.2019.0679. PMID 31144523.
- Fox, Michael D.; Corbetta, Maurizio; Snyder, Abraham Z.; Vincent, Justin L.; Raichle, Marcus E. (2006-06-27). "Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems". Proceedings of the National Academy of Sciences (باللغة الإنجليزية). 103 (26): 10046–10051. doi:10.1073/pnas.0604187103. ISSN 0027-8424. PMID 16788060.
- Shulman, Gordon L.; McAvoy, Mark P.; Cowan, Melanie C.; Astafiev, Serguei V.; Tansy, Aaron P.; d'Avossa, Giovanni; Corbetta, Maurizio (2003-11-01). "Quantitative Analysis of Attention and Detection Signals During Visual Search". Journal of Neurophysiology. 90 (5): 3384–3397. doi:10.1152/jn.00343.2003. ISSN 0022-3077. PMID 12917383.
- Steimke, Rosa; Nomi, Jason S.; Calhoun, Vince D.; Stelzel, Christine; Paschke, Lena M.; Gaschler, Robert; Goschke, Thomas; Walter, Henrik; Uddin, Lucina Q. (2017-12-01). "Salience network dynamics underlying successful resistance of temptation". Social Cognitive and Affective Neuroscience (باللغة الإنجليزية). 12 (12): 1928–1939. doi:10.1093/scan/nsx123. ISSN 1749-5016. PMID 29048582.
- Menon, V. (2015-01-01), "Salience Network", in Toga (المحرر), Brain Mapping, Academic Press, صفحات 597–611, doi:10.1016/B978-0-12-397025-1.00052-X, ,08 ديسمبر 2019
- Zanto, Theodore P.; Gazzaley, Adam (2013-12-01). "Fronto-parietal network: flexible hub of cognitive control". Trends in Cognitive Sciences. 17 (12): 602–603. doi:10.1016/j.tics.2013.10.001. PMID 24129332.
- Scolari, Miranda; Seidl-Rathkopf, Katharina N; Kastner, Sabine (2015-02-01). "Functions of the human frontoparietal attention network: Evidence from neuroimaging". Current Opinion in Behavioral Sciences. 1: 32–39. doi:10.1016/j.cobeha.2014.08.003. ISSN 2352-1546. PMID 27398396.
- Marek, Scott; Dosenbach, Nico U. F. (June 2018). "The frontoparietal network: function, electrophysiology, and importance of individual precision mapping". Dialogues in Clinical Neuroscience. 20 (2): 133–140. ISSN 1294-8322. PMID 30250390.