يعرف معامل الانزلاق (Slip factor) أنه مقياس لانزلاق المائع علي ريش الضاغط أو التربينة في الآلات التوربينية، ذات الطرد المركزي (Centrifugal) في الغالب.
كما يعرف انزلاق المائع أنه انحراف زاوية خروج المائع من الريشة عن زاوية ميل الريشة نفسها (blade angle) و تكون صغيرة جدا في حالة الآلات التوربينية ذات السريان المحوري (Axial Flow turbomachines) حيث يدخل و يخرج المائع في نفس الاتجاه، بينما تتضح و تزيد في الآلات التوربينية ذات السريان القطري(Radial Flow turbomachines).
يعتبر انزلاق المائع ظاهرة مهمة و مؤثرة في الألات التوربينية ذات السريان القطري حيث يؤثر على قيمة الشغل المستخرج من المائع أو المبذول عليه، إضافة إلى تأثيره في ارتفاع الضغط وفي مثلثات السرعة عند مخرج الريش.
لتوضيح انزلاق المائع، نفرض أن عدد 'z' من الريش تدور بسرعة زاوية ω.
تستقبل مقدمة سطح الريشة المائع بضغط مرتفع و سرعة منخفضة فيعمل على دورانها في اتجاه عقارب الساعة حيث تتحول طاقة سريان المائع إلى طاقة حركة للريشة، ثم يترك سطح الريشة عند حافة النهاية لها بضغط منخفض و سرعة مرتفعة.
نتيجة فرق ضغط المائع و سرعته عند حافة البداية و النهاية للريشة يدور المائع حول الريشة في اتجاه السرعة الزاوية لها ω مما يمنع حدوث دوامات هواء بسرعة مساوية لسرعة الريشة تتسبب دوامات الهواء في حدوث انفصال للمائع عن سطح الريشة و فقدان في الضغط إضافة إلي منع حدوث توزيع غير متساوٍ لسرعة المائع عند أي نصف قطر يتم تحديده في الآلة التوربينية.
تقلل هذه الظاهرة السرعة الدوامية(Swirl velocity) للمائع عند خروجه من الريشة، حيث تعتبر مقياس للقدرة الناتجة من التربينة أو القدرة المستهلكة بواسطة الضاغط.
و يحدث فقد في معامل انزلاق المائع، حيث يزداد انزلاق المائع على الريشة بزيادة معدل التدفق، و قد يصل إلى حد الانفصال عن السطح الريشة، الأمر الذي يراعى جيدا في التصاميم .
العوامل المؤثرة علي معامل الانزلاق
- الدوامة النسبية.
- الدوامة أو التيار العكسي.
- تصميم و شكل الريش.
- متوسط الحمل المؤثر علي الريشة.
- سٌمك الريشة.
- عدد الريش.
- خصائص المائع عند الدخول.
- لزوجة المائع.
- تأثير تكون الطبقة الحدية.
- انفصال المائع عن سطح الريشة.
- قوة الاحتكاك بين طبقات المائع.
- عمل الطبقة الحدية كحاجز لمرور السريان.
الصيغ الرياضية لمعامل الانزلاق
رياضيا يعرف معامل الانزلاق بأنه النسبة بين القيمة الفعلية للسرعة الدوامية إلى القيمة المثالية لها عند مخرج الريش، ويرمز له بالرمز 'σ'.
تُحسب القيمة المثالية للسرعة الدوامية عن طريق النهج التحليلي أي الإثباتات الرياضية، بينما تُحسب القيمة الفعلية عن طريق التجارب و الملاحظات.
يمكن التعبير عن معامل الانزلاق رياضيا بالمعادلة التالية:
حيث:
- V'w2: السرعة الدوامية الفعلية عند الخروج.
- Vw2: السرعة الدوامية المثالية هند الخروج.
و تتراوح قيمة السرعة الدوامية من 0 إلى 1 و قيمتها المتوسطة تكون من 0.9:0.8.
يعرف الفرق بين القيمة المثالية والفعلية للسرعة الدوامية بسرعة الانزلاق، و يعبر عنها رياضيا بالمعادلة التالية:
(VS = Vw2 - V'w2 = Vw2(1-σ
حيث:
- Vs: سرعة الانزلاق.
الصيغ المختلفة لمعامل الانزلاق
1.معادلة ستودولا (Stodola's Equation): طبقا لاستودولا فإن الدوامة النسبية للمائع هي ما تتواجد في مسار الخروج من الريشة.
لسريان معين تزداد قيمة معامل الانزلاق بزيادة عدد الريش و يكون هناك مفاقيد تُحسب من العلاقة التالية:
حيث:
- Z: عدد الريش.
- β2 = 90° في حالة أن تكون نهاية الريشة في اتجاه نصف القطر للألة (Radial Tip) و تصبح العلاقة المعبرة عن معامل الانزلاق هنا بالشكل التالي:
نظريا يمكن الحصول علي توجيه مثالي للمائع بحيث يخرج بزاوية الريشة بالضبط دون أي انحراف عن طريق زيادة عدد الريش مع خفض سمكها لتقليل الاحتكاك مع المائع.
لكن فعليا فزيادة عدد الريش يؤدي إلى زيادة الطبقة الحدية و بالتالي زيادة مساحة حجز سريان المائع.
2.معادلة إستانيتز (Stanitz's Equation): و جد ستاتنتيز أن معامل الانزلاق لا يعتمد علي زاوية الريشة عند حافة الخروج - عكس ستودولا - وعبر عن معامل الانزلاق بالمعادلة التالية:
حيث:
- Z: عدد الريش.
- β2: زاوية الريشة عند الخروج و تتراوح من 45°:90°.
- β2 = 90° في حالة أن تكون نهاية الريشة في اتجاه نصف القطر للآلة (Radial Tip) وتصبح العلاقة المعبرة عن معامل الانزلاق هنا بالشكل التالي:
3. معادلة بالج (Balje's formula): معادلة تقريبية للريش ذات النهايات القطرية حيث (β2=900) و تعبر عنها العلاقة التالية:
حيث:
- Z: عدد الريش.
- n: النسبة بين قطر المروحة الدافعة للمائع (Impeller) عند طرف نهاية الريش (قطر فتحة دخول المائع أو ما يسمي بالعين).
توضح العلاقات السابقة أن معامل الانزلاق يعتمد على شكل ريش المروحة الدافعة للمائع، و مع ذلك فإن دراسات مؤخرة أثبتت أنه يعتمد على عدة عوامل أخرى من بينها معدل تدفق المائع و لزوجته.
و قد وجد أن الانخفاض في زاوية الريشة عند الخروج تزيد من معامل الانزلاق و معدل تدفق المائع.
مقالات ذات صلة
المراجع
- Seppo A. Korpela (2011), Principles of Turbomachinery. John Wiley & Sons,Inc. .
- S.L. Dixon (1998), Fluid Mechanics And Thermodynamics of Turbomachinery. Elsevier Butterworth-Heinemann,Inc. .
- Fluid Machine - FKM - تصفح: نسخة محفوظة 04 مارس 2016 على موقع واي باك مشين.
- Analysis and Validation of a Unified Slip Factor Model for Impellers at Design and off-Design Conditions - تصفح: نسخة محفوظة 08 أغسطس 2017 على موقع واي باك مشين.
- Numerical Study of Slip Factor in Centrifugal Pumps and Study Factors Affecting its Performance - تصفح: نسخة محفوظة 4 مارس 2016 على موقع واي باك مشين.
- Fluid Machinery - NPTEL - تصفح: نسخة محفوظة 20 نوفمبر 2013 على موقع واي باك مشين.
- Experimental and Analytical Investigations of Slip Factor In Radial Tipped Centrifugal Fan - تصفح: نسخة محفوظة 13 أبريل 2020 على موقع واي باك مشين.