الرئيسيةعريقبحث

موتر


☰ جدول المحتويات


لمعانٍ أخرى، انظر موتر (توضيح).
موتر الإجهاد لكوشي، موتر من الدرجة الثانية. مكونات الموتر في النظام الإحداثي الديكارتي ثلاثي الأبعاد تكَون المصفوفة

أعمدة هذه المصفوفة هي الإجهادات (القوة على كل وحدة مساحية) العاملة على الأوجه e1 و e2 و e3 للمكعب.

المُوَتِّر[1] أو المُمْتَدّ[2] (tensor)‏ هو، في الرياضيات، أحد الدالات الرياضية بجانب الأعداد أو الكميات المطلقة generalized 'quantity' التي لا تتميز بوحدات للقياس. يتميز الموتّر بأنه يحتوي في خواصه خواص الأعداد المطلقة scalar، والمتجهات، والمعاملات الخطية linear operator.

التاريخ

انبثق مفهوم الموتر من عمل كارل فريدريش غاوس في الهندسة التفاضلية. انظر إلى متعددة حدود متجانسة.

تعريف

يمكن للموتّر أن يكتب بدلالة الإحداثيات، أو مصفوفات قيم سلمية، لكنه يعرف على أنه مستقل عن أي إطار مرجعي.

للموتّرات أهمية كبيرة في الفيزياء والهندسة التطبيقية. ففي مجال تصوير الانْتِشار المُوَتِّر[3] Diffusion tensor imaging، يعبر الموتّر عن النفاذية التفاضلية للمركبات العضوية إلى الماء ليعطي مسحا للدماغ.

أما أهم تطبيقات الموتّر في الهندسة التطبيقية (المدنية خصوصا) فهو موتر الإجهاد وموتّر التشوه strain tensor، وكلاهما موتّرات من الرتبة الثانية ويرتبطان بمادة خطية عامة عن طريق موتّر المرونة elasticity tensor ذو الرتبة الرابعة.

تعتبر المتجهات مثلا موتّرات من الدرجة الأولى والموتّر في حد ذاته هو ذلك الشعاع الذي نرسمه على الورقة مثلا أما الشعاع أو المتجة فماهو إلا مظهر من تمظهرات الموتّر حيث يمكننا أن نكتب الموتّر في قواعد مختلفة تعطينا إحداثيات مختلفة للمتجه.

موضوع الموترات هو موضوع فيزيائى ورياضى ولكنه ظهر في ميدان الفيزياء أولا ثم التقطه الرياضيون بعد ذلك وهذبوه ونقوه من التناقضات وصار بعد ذلك موضوعا رياضيا. وكان لالبرت اينشتاين دورا كبيرا في شهرة حساب الموترات لانه استخدم هذا الحساب في نظريته النسبية العامة.

وفي الفيزياء توجد أنواع عديدة من الكميات فهناك كميات قياسية وكميات متجهة ثم كميات موترة أو تنسورية. فما هو الفارق بين هذه الكميات؟ الكميات القياسية يعبر عنها برقم واحد بالإضافة إلى وحدة للقياس. فمثلا عندما نقول عن كتلة شئ أنها 3 كجم فان مانحتاجه هو رقم واحد وهو الرقم ثلاثة بالإضافة إلى وحدة القياس وهي الكيلوجرام. اي أن كتلة الشئ الذي أمامى هي ثلاثة أضعاف كتلة جسم قياسى يستخدم لقياس الكتل. وكذلك الحال بالنسبة للطول 3 متر أو للزمن 3 ثوانى. ففي كل هذه الحالات أحتاج لرقم واحد من أجل تعيين الكمية تعيينا كاملا. ثم تأتى بعد ذلك الكميات المتجهة. وكلمة متجه أو vector تعنى باللغة اللاتينية سائق أو أنه يوجه في اتجاه معين. وهذا النوع من الكميات لا يمكن وصفه عن طريق رقم واحد. ولكنى أحتاج لأكثر من رقم لوصف الكمية التي أمامى. مثال على ذلك هي الإزاحة: فاننى إذا طلبت منك أن تزيح كوبا من الماء موضوعا فوق منضدة فارغة مسافة 50 سم فستسألنى في أى اتجاه ينبغى أن تزيحه للامام؟ للخلف؟ لليمين؟ لليسار؟ فالإزاحة تحتاج بجانب مقدار المسافة وهو 50 سم رقم اخر يعبر عن الاتجاه. وقد يكون هذا الرقم مثلا عبارة عن الزاوية اللتى يصنعها الاتجاه المقصود مع اتجاه الشمال الجغرافى مقاسة في اتجاه دوران عقرب الساعة. فعندما أقول مثلا أن عليك ان تحرك الكوب مسافة 50 سم بالزاوية 90 درجة فانني اعنى بذلك ان تحرك الكوب 50 سم في اتجاه الشرق. ولكن عموما فان المتجهات يتم التعبير عنها في الاحداثيات الكارتيزية بمجموعة ارقام يساوي عددها عدد الابعاد في الفضاء الموجود. ويعبر عن المتجه رياضيا بصورة مصفوفة ذات عمود واحد. مثال اخر قد يبدو غريبا للمتجه هو قياس البنطلون الجينز.حيث يعبرعن المقاس برقمين مثلا 36 : 34 فرقم يعبر عن الطول ورقم يعبر عن مقاس الوسط. اذن فقياس البنطلون الجينز كمية متجهة

كلمة موتر هي مشتقة من الكلمة الإنجليزية Tension بمعنى شدة أو توتر. ولذلك تأتى الترجمة العربية التي قد تبدو غريبة بعض الشئ الموترات. والموترات هي متجهات فائقة. بمعنى كما أن المتجه مجموعة من الأعداد أو الكميات القياسية فان الموتر هو مجموعة من المتجهات. مثال : عندما أطلب منك أن تزيح عصا طويلة موجودة فوق الطاولة في اتجاه ما. فان متجه واحد لن يكفى لوصف هذه العملية. لماذا؟ لأن كوب الماء يمكننا تخيله نقطة واحدة.أما في حالة العصا فانها قد لا تحافظ بالضروة بعد ازاحتها على نفس الاتجاه التي كانت تاخذه قبل الإزاحة. فمثلا قد تكون العصا تشغل في البداية اتجاه الشمال-الجنوب ولكنها بعد الإزاحة ينبغى ان تأخذ اتجاه الشرق-الغرب.

ومن هنا فان متجها واحدا لايكفي لوصف هذه العملية بل نحن في حاجة إلى مجموعة من المتجهات. ويعبر عن عن الموترات بصورة مصفوفة.

ثم ان هناك درجة اعلى من الموترات وهي الموترات الفائقة وهي بدورها عبارة عن مجموعة من الموترات لوصف عملية ما. على سبيل المثال، إذا طلبت منك ازاحة عصا طويلة موضوعة على منضدة مسافة ما. وكما راينا ان هذه العملية تحتاج لموتر كما سبق ووضحنا. فاذا اضفت ان العصا بعد ازاحتها لن تحافظ على استقامتها بل انها ستأخذ شكلا مقوسا ما فاننا نري ان موترواحد لن يكفي لوصف هذه العملية بل اننا نحتاج الي مجموعة من الموترات أو موتر فائق.

وهكذا فاننا نري انه لا توجد نهاية لهذه العملية واستطيع ان اعرف موترات فوق الفائقة وهكذا إلى مالانهاية. وفي بعض الكتب نجد ان الكميات القياسية يتم توصيفها بانها موترات من الدرجة صفر اما المتجهات فهي موترات من الدرجة الاولى ثم ان الموترات العادية هي من الدرجة الثانية اما الموترات الفائقة فهي من الدرجة الثالثة وهكذا.

إن الموتر في الفيزياء هو كمية فيزيائية حقيقية وبالتالى فهى تحافظ على قيمتها بغض النظر عن محاور الاسناد المستخدمة لوصف هذه الكمية. ولهذه النقطة دور مهم في النظرية النسبية العامة. حيت ان جميع القوانين الفزيائية تحافظ على صورتها بغض النظر عن محاور الاسناد.

أهمية الموترات

الهندسة التحليلية أو الهندسة الجبرية تقوم على تحويل المفاهيم الهندسية كالنقطة والخط والمستوى إلى معادلات جبرية متجهة. اي ان المتجهات تلعب هنا الدور الأكبر في وصف الهندسة. ثم تأتي بعد ذلك الهندسة التفاضلية التي تعبر عن هندسات اعقد من الهندسة الاقليدية كهندسة ريمان. وهنا يلعب الموتر دورا كبيرا. فتظهر الحاجة إلى معلومات متطورة في حساب المتجهات وحساب الموترات والتفاضل والدوال بدلالة أكثر من متغير وتفاضل هذه الدوال تفاضل جزئي أو تفاضل كامل.

للموترات دور هائل في الفيزياء الحديثة. فأي كمية أو أي قانون فيزيائى سليم يجب أن يأخذ صورة معادلات تنسورية بشكل أو باخر. وقد يكون الموتر من الدرجة صفر أو واحد أو اثنين أو ثلاثة أو أعلى من ذلك.

تعميمات

الموترات في أبعاد غير منتهية

أساسيات

تطبيقات

مراجع

وصلات خارجية

موسوعات ذات صلة :