الرئيسيةعريقبحث

نظام عد ثنائي

نظام عد ذو رقم أساس 2

☰ جدول المحتويات


تمثيل الأعداد من -8 إلى +8 في نظام العد الثنائي بصيغ مختلفة
كلمة Wikipedia ممثلة بنظام العد الثنائي

نظام العد الثنائي (Binary Numeral System)‏ هو نظام عد ذو رقم أساس 2، يستخدم لتمثيل قيم عددية باستخدام رمزين، عادة ما يكونان، 0 و1. كما يمكن استخدام أي رمزين أو حالتين مثل 0 و1 أو صح /خطأ أو تشغيل /إطفاء. بسبب سهولة تنفيذه مباشرةً في البوابات المنطقية والإلكترونيات الرقمية فإن نظام العد الثنائي مستخدم عملياً في كل الحواسب الحديثة.

ويسمى العدد في هذا النظام عدد ثنائي.[1]

التمثيل

عادة ما تمثل الأرقام الثنائية باستخدام 1 و0. ولكن يجب توضيح أنها ثنائية فالعدد 101 هو مئة وواحد في نظام العد العشري، ولكن بالتمثيل الثنائي فإنه يساوي العدد 5. لاحظ أن لفظ الرقم الثنائي يتم بلفظ كل خانه مثل 101 يتم لفظها واحد صفر واحد وليس مائة وواحد فهذا خطأ. كثيرًا ما يحصل التباس بين النظام العشري والثنائي عند عامة الناس، ونتيجة لذلك فإن هناك بعض الطرائف التي تطلق مثل (هناك 10 أنواع من الناس، نوع يفهم النظام الثنائي ونوع آخر لا يفهمه). حيث 10 تمثل رقم ثنائي يعادل 2.

يمكن كتابة الرقم 101 على شكل 10101 أو 2101 للتمييز بين أنظمة العد المستخدمة، فالرقم الأول يستخدم النظام العشري أما الثاني فهو يستخدم النظام الثنائي، يسمى الرقم الذي في الأسفل برقم الأساس، ويقرأ الرقم الذي يستخدم هذا الشكل للتعبير عنه: مئة وواحد للأساس 10 أو واحد صفر واحد للأساس 2.

ويمكن تمييز نظام العد الثنائي بإضافة رموز، سواء قبل العدد (prefixed)‏ أو بعده (postfixed)‏. ويرمز للنظام الثنائي بالرمز b أو bin (اختصار binary، أي ثنائي).

  • 10101 binary
  • 1010b (بي b تشير إلى أن العدد بالنظام الثنائي، وتلك الطريقة تسمى طريقة Intel)
  • 100101B (السابقة بي B تشير إلى أن العدد بالنظام الثنائي)
  • bin 100101 (البين bin تشير إلى أن العدد بالنظام الثنائي)
  • 1001012 (2 صغيرة مكتوبة أسفل العدد تشير على أنه نظام ثنائي)
  • %100101 (سابقة % تشير إلى النظام الثنائي; وتسمى طريقة موتورولا [2][3])

تمثيل الأعداد السالبة

تعامل الأعداد السالبة في نظام العد الثنائي بنفس الطريقة التي تعامل بها الأعداد السالبة في النظام العشري (فمثلا إضافة عدد موجب إلى عدد سالب يطرح العدد الأصغر بالقيمة المطلقة من العدد الأكبر وتعطى إشارة العدد الأكبر للناتج).

للتمييز بين الأعداد الصحيحة الموجبة والسالبة الممثلة بـ ن من الخانات الثنائية يمكن حجز الخانة الأكثر أهمية (MSB أو Most Significant Bit)‏ لتمثيل الإشارة.

مثال: عدد ثنائي مكون من سبع خانات ثنائية (ن = 7 بت)

  • العدد موجب (MSB = 0)، مثل: 0110110
  • العدد سالب (MSB = 1)، مثل: 1110110

الرقم بالخط العريض يشير إلى الخانة الأكثر أهمية (MSB).

العلاقة مع نظام العد العشري

نظام العد الثنائي هو نظام عد يتشابه مع نظام العد العشري الشائع بأنه يستخدم الخانات ويختلف عنه بأنه ينتقل من خانة إلى أخرى كل رقمين وليس كل عشرة أرقام. وذلك يعني أن كل خانة في النظام الثنائي تحمل قيمة من اثنتين لا من عشرة، وعادة ما تستخدم القيمتان 1 و0 للتعبير عن الأعداد بالنظام الثنائي.

الأعداد بالثنائي

هذا العداد يبين كيفية العد بالنظام الثنائي من 0 إلى 31

واحد: 1

أثنين: 10

ثلاثة: 11

أربعة: 100

خمسة: 101

ستة: 110

سبعة: 111

ثمانية: 1000

تسعة: 1001

عشرة: 1010

احدى عشر: 1011

اثنى عشر: 1100

وهكذا

تقوم الحواسيب بالحسابات بالأعداد الثنائية فقط، كما أنها تحول الأوامر إلى أعداد ثنائية؛ وكل عملها يتم بنظام العد الثنائي.

تحويل من ثنائي إلى عشري

في النظام العشري يستخدم أساس عشري لتحديد الخانات، فمثلاً الرقم 452 هو 400+50+2 أي:

  • 2*010+
  • 5*110+
  • 4*210

نفس المفهوم يطبق على النظام الثنائي فالخانة الأولى من اليمين تساوي العدد مضروباً في 02 أي 1 والخانة الثانية تساوي العدد مضروباً في 12 أي 2 والخانة الثالثة تساوي العدد مضروباً في 22 أي 4... وهكذا. أمثلة:

  • الرقم 10 بالنظام الثنائي يساوي 0*1+1*2=2 بالنظام العشري
  • الرقم 11 يساوي 1*1+1*2=3 بالنظام العشري
  • الرقم 101 يساوي 1*1+0*2+1*4=5 بالنظام العشري
  • الرقم 100101 يساوي 1*1+0*2+1*4+0*8+0*16+1*32=37 بالنظام العشري أو
    • 1*02=1+
    • 0*12=0+
    • 1*22=4+
    • 0*32=0+
    • 0*42=0+
    • 1*52=32
    • المجموع 37

تحويل من عشري إلى ثنائي

طريقة القسمة المتتالية

تستخدم للجزء الطبيعي من العدد وذلك بتقسيم العدد بشكل متكرر على 2 ونأخذ الباقي الذي هو الرقم المحوَّل إليه ونتوقف أما بالنسبة للجزء العشري من العدد فيتم بضرب الجزء العشري ب2 وأخذ العدد الصحيح ووضعه ثم الضرب مجدداً دون رقم صحيح (أي الجزء الصحيح في كل مرة يحول إلى 0 بعد أخذ قيمته) ويتوقف عند الوصول إلى قيمة 1.00

المبادلات والتجميع ب2

طريقة تستعمل بالنسبة لأعداد صغيرة جدا، وهي خاصة بالأطفال، حيث يتم رسم مجموعة عدد عناصرها هو العدد العشري، ويتم تجميع كل عنصرين وتبديلهما بعنصر جديد مغاير، والباقي هو الرتبة الأولى على اليمين للتمثيل الثنائي، وتعاد نفس العملية بالنسبة للمجموعة الجديدة. وتنتهي العملية عند الحصول على مجموعة تضم عنصرا واحدا.

انظر أيضاً

مراجع

  1. المعجم الطبي الموحد - تصفح: نسخة محفوظة 27 أغسطس 2017 على موقع واي باك مشين.
  2. Küveler, Gerd; Schwoch, Dietrich (2013) [1996]. Arbeitsbuch Informatik - eine praxisorientierte Einführung in die Datenverarbeitung mit Projektaufgabe (باللغة الألمانية). Vieweg-Verlag, reprint: Springer-Verlag. doi:10.1007/978-3-322-92907-5.  . 9783322929075. مؤرشف من الأصل في 8 أبريل 201905 أغسطس 2015.
  3. Küveler, Gerd; Schwoch, Dietrich (2007-10-04). Informatik für Ingenieure und Naturwissenschaftler: PC- und Mikrocomputertechnik, Rechnernetze (باللغة الألمانية). 2 (الطبعة 5). Vieweg, reprint: Springer-Verlag.  . 9783834891914. مؤرشف من الأصل في 8 أبريل 201905 أغسطس 2015.

وصلات خارجية

موسوعات ذات صلة :