En mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique).
Produit tensoriel d'espaces vectoriels
Définition
Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif . Il existe[1] un espace vectoriel, noté , et une application bilinéaire
ayant la propriété suivante (dite universelle) : pour tout espace vectoriel sur le même corps , et pour toute application bilinéaire de dans , il existe une et une seule application linéaire de dans telle que
De plus, un tel couple est unique à un isomorphisme près.
L'espace est le produit tensoriel de et , et est le produit tensoriel de et .
Parfois il est important de préciser le corps dans la notation du produit tensoriel, on écrit alors .
Si et sont respectivement des bases de et , alors est une base de . En particulier, si et sont de dimension finie,
Techniquement, le théorème d'existence et d'unicité est un garde-fou qui permet de se contenter du point de vue des bases.
Produit tensoriel multiple
On peut réitérer l'opération. Le produit tensoriel est associatif : il existe un isomorphisme naturel (c'est-à-dire ne dépendant pas du choix de bases) entre et . Cet isomorphisme envoie sur . De même, les espaces et sont isomorphes. Mais attention : si E = F, l'application bilinéaire
n'est pas symétrique. Bien plus, si x et y ne sont pas colinéaires, on a :
Une situation très fréquente, notamment en géométrie différentielle, est celle où l'on considère des produits tensoriels d'un certain nombre d'exemplaires de E et de son dual. On dit qu'un élément de est un tenseur p-contravariant et q-covariant, ou plus brièvement un tenseur de type (p,q). L'espace est aussi noté [2]
Attention. Les géomètres appellent "covariant" ce que les algébristes appellent "contravariant" et vice-versa. Heureusement, tout le monde est d'accord sur l'appellation type (p,q).
Produit tensoriel d'applications linéaires
Soient des espaces vectoriels, et des applications linéaires. En appliquant la propriété universelle à l'application bilinéaire
on voit qu'il existe une unique application linéaire
C'est par définition le produit tensoriel de f et g.
Exemples
Les exemples ci-dessous emploient la convention de sommation d'Einstein.
Avec cette convention, on n'écrit pas les sommations qui deviennent très vite lourdes à manipuler. On somme les indices répétés deux fois de la quantité appropriée.
Deux exemples fondamentaux
Produit de deux tenseurs covariants d'ordre 1
Soient E et F deux espaces vectoriels de dimension finie sur un corps commutatif K. Le produit tensoriel des formes linéaires
est la forme bilinéaire sur E×F donnée par
(Rappelons que l'espace vectoriel s'identifie à ). En coordonnées, si et , alors
Produit d'un tenseur covariant et d'un tenseur contravariant, tous deux d'ordre 1
Soit maintenant une forme linéaire sur E et v un vecteur de F. Leur produit tensoriel s'identifie à l'application linéaire de E dans F donnée par
En coordonnées, si et , la matrice de cette application linéaire est
Cela montre au passage que s'identifie à , les éléments décomposés de correspondant aux applications linéaires de rang 1 de .
Extension du corps de base
Soit un corps commutatif et un sous-corps de . À partir de tout espace vectoriel E sur , on peut construire un espace vectoriel sur en posant
où le en indice indique qu'il s'agit d'un produit tensoriel d'espaces vectoriels sur . Un exemple important est celui où et . On dit alors que est le complexifié de E.
Produit tensoriel de deux tenseurs covariants d'ordres respectifs p et q
Soient et . Alors est la forme -linéaire sur définie par
En coordonnées,
Produit tensoriel de deux tenseurs contravariants d'ordre 1
Il s'agit donc ici de vecteurs. Soient E et F deux espaces vectoriels de dimension finie, et de dimensions respectives p et q, muni de bases respectives et . Si (avec la convention d'Einstein) et , alors
Autrement dit, est un espace vectoriel de dimension pq dont une base est engendrée par les produits tensoriels deux à deux des vecteurs de base de E et F. En fait, l'espace et le produit ne dépendent pas du choix de ces bases. On peut le vérifier directement ou invoquer la définition intrinsèque du produit tensoriel.
Produit tensoriel contracté
Contraction
On peut envoyer dans de la façon suivante :
à on associe (rappelons que les sont des vecteurs et les des formes linéaires). Cette application, définie au départ sur les éléments décomposés de (c'est-à-dire s'écrivant comme produits tensoriels d'éléments de et de son dual), se prolonge à l'espace tout entier.
En coordonnées (à condition de prendre sur la base duale de la base choisie pour ), cette application s'écrit
On a utilisé bien sûr la convention d'Einstein. Ici on a contracté le premier indice contravariant et le premier indice covariant. On peut faire cette opération avec d'autres indices : il y a pq contractions de dans
Un produit tensoriel contracté est un produit tensoriel suivi d'une ou plusieurs contractions.
Il peut se voir comme une généralisation du produit de matrices.
Application aux changements d'indice
Soit une forme bilinéaire non dégénérée. C'est un tenseur de type (0,2). La forme duale est un tenseur de type (2, 0). Le produit contracté de g (resp. ) par un tenseur de type (p, q) est un tenseur de type (p – 1, q + 1) (resp. de type (p + 1, q – 1).
En fait, grâce à l'hypothèse de non-dégénérescence, le produit contracté par g est un isomorphisme de sur dont l'isomorphisme inverse est le produit contracté par . Certains auteurs[3] appellent ces isomorphismes isomorphismes musicaux et les notent avec des bémols ou des dièses suivant qu'ils font descendre ou monter les indices. Ils sont très utilisés en géométrie riemannienne ou pseudo-riemannienne.
Exemples
- Pour p = q = 1, l'application de dans K n'est autre que la trace, si on utilise l'identification naturelle entre et .
- Le tenseur de courbure d'une variété riemannienne (M, g) est un tenseur de type (1,3).
Il aurait donc a priori trois contractions possibles. Mais en raison de ses propriétés de symétrie, la contraction avec le troisième indice covariant donne 0, tandis que le premier et le deuxième donnent des résultats opposés. La courbure de Ricci est l'une de ces contractions (les conventions peuvent varier). En coordonnéesDe façon intrinsèque, est la trace de l'opérateur linéaire . - Sur une variété riemannienne ou pseudo-riemannienne, la divergence d'un tenseur s'obtient en contractant l'indice de dérivation et un autre indice (le plus souvent on travaille avec des tenseurs symétriques ou anti-symétriques, il n'y a alors au signe près qu'une divergence possible). Explicitement, la divergence d'un tenseur T de type (0, p + 1) est le tenseur de type (0, p) donné par
- En physique du solide, la loi de Hooke s'exprime par un produit tensoriel contracté : on a
Ici C désigne le tenseur d'élasticité (symétrique d'ordre 4), e le tenseur des contraintes et S le tenseur des déformations (tous deux symétriques d'ordre 2)[4] (en physique classique, on travaille dans des repères orthonormés, ce qui permet de ne pas respecter les conventions d'indices, puisque l'on peut identifier tous les types de tenseurs de même ordre).
Généralisations
Le produit tensoriel peut se définir
- dans le cas où le corps de base est non commutatif — mais alors sera seulement un groupe abélien ;
- pour les modules sur un anneau ;
- pour les fibrés vectoriels (à l'instar de toute opération « naturelle » sur les espaces vectoriels[5]) ;
- pour les espaces localement convexes (c'est cette généralisation qui a rendu Alexandre Grothendieck célèbre[6], bien avant ses travaux en géométrie algébrique).
Bibliographie
- N. Bourbaki, Livre II (Algèbre), chap. 2, § 3 et 4.
- Roger Godement, Cours d'Algèbre, Hermann, section 21
- (en) Serge Lang, Algebra [détail des éditions], chap. 16
Notes et références
- ↑ La démonstration est donnée dans l'article : Produit tensoriel de deux modules
- ↑ (en) Marcel Berger, A Panoramic View of Riemannian Geometry, [détail de l’édition], p. 796.
- ↑ (en) Sylvestre Gallot, Dominique Hulin et Jacques Lafontaine, Riemannian Geometry [détail de l’édition].
- ↑ Richard P. Feynman, Robert B. Leighton et Matthew Sands (en), Le Cours de physique de Feynman [détail de l’édition], Électromagnétisme, 39-2.
- ↑ (en) Morris W. Hirsch, Differential Topology [détail des éditions].
- ↑ A. Grothendieck, « Produits tensoriels topologiques et espaces nucléaires », Séminaire Bourbaki, 1951-1954 (lire en ligne), exp. no 69.
Voir aussi
Articles connexes
Lien externe
(en) Tim Gowers, « How to lose your fear of tensor products »