الرئيسيةعريقبحث

اقتران ثنائي خطي


في الرياضيات، الاقتران الثنائي-خطي هو دالة تضم عنصرين من فضائين متجهين لتنتج عنصرًا من فضاء متجه ثالث، وهي خطية في كل من متغيراتها. ضرب المصفوفات يعتبر اقترانًا ثنائي-خطيًا على سبيل المثال.

التعريف

لتكن V, W و X ثلاث فضاءات متجهة على نفس الحقل F. الاقتران الثنائي الخطي هو الدالة

B : V × W → X

بحيث، لكل w في W، الاقتران

(v ↦ B(v, w

هو اقتران خطي من V إلى X، ولكل v في V الاقتران

(w ↦ B(v, w

هو اقتران خطي من W إلى X.

في حالة V=W و (B(v,w)=B(w,v لكل v,w في V، فإن الاقتران يسمى تماثليًا.

أمثلة

  • ضرب المصفوفات هو اقتران ثنائي خطي (M(m, n) × M(n, p) → M(m, p.
  • إذا كان V فضاء متجهات على الأعداد الحقيقية R يحمل جداءً داخليًا، فإن الجداء الداخلي اقتران ثنائي-خطي تماثلي V × V → R.

مقالات ذات صلة

موسوعات ذات صلة :