الرئيسيةعريقبحث

شبه منحرف

هو رباعي أضلاع يكون فيه اثنان من الأضلاع المتقابلة متوازيان

☰ جدول المحتويات


شبه المنحرف[1] هو رباعي أضلاع يكون فيه اثنان من الأضلاع المتقابلة متوازيان. ويمكن تعريفه على أنه رباعي أضلاع له فقط ضلعين متقابلين متوازيين، وبذلك يتم استثناء متوازي الأضلاع من التعريف الذي غالباً ما يعتبر حالة خاصة من شبه المنحرف.

شبه منحرف
Trapezoid.svg
شبه منحرف
نوع رباعي أضلاع
أضلاع ورؤوس 4
المساحة
خصائص محدب

المساحة

لتكن K مساحة شبه منحرف كيفي

K بدلالة القاعدتين الكبرى والصغرى والارتفاع تكون:

K بدلالة الأضلاع الأربعة تكون:

حيث أن:

K حسب علاقة بريتشنايدر:

الارتفاع

ارتفاع شبه المنحرف بدلالة الأضلاع الأربعة يكون حسب العلاقة التالية:

القاعدتان

Trapezium.svg

القاعدتان الكبرى والصغرى لشبه منحرف كيفي بدلالة القطرين والضلعين الجانبيين حسب علاقة بن عيشة جمال الدين:

حيث أن AC=p، BD=q، AD=c و BC=d مع p لايساوي q.

يمكن استعمال علاقة جمال في اثبات توازي مستقيمين، حيث بالنسبة للشكل الذي لدينا: إذا كان 0<b² فإن a و b متوازيان، وإذا كان b²<0 فإن a و b غير متوازيين.

القطران

Trapezium.svg

يمكن حساب قطري شبه المنحرف انطلاقا من الأطوال الأربعة باستخدام العلاقة التالية:

مع p لايساوي q. الا في حالة ان يكون شبه المنحرف متطابق الساقين

انظر أيضاً

مراجع

  1. قاموس المورد، البعلبكي، بيروت، لبنان.

وصلات خارجية



موسوعات ذات صلة :