الرئيسيةعريقبحث

فيروس كورونا المرتبط بالمتلازمة التنفسية الحادة الشديدة

نوع من الفيروسات

☰ جدول المحتويات


فيروس كورونا المرتبط بالمتلازمة التنفسية الحادة الشديدة

SARS-CoV with corona.jpg
صورة بالمجهر الإلكتروني النافذ لفيروسات تاجية متعلقة بسارس الناشئة من الخلايا المضيفة المستنبتة في المختبر

المرتبة التصنيفية نوع[1][2] 
التصنيف العلمي 
فوق النطاق  حيويات
مملكة  Riboviria
رتبة  فيروسات عشية
فصيلة  فيروسات تاجية
فُصيلة  فيروس كورونا
جنس  فيروس كورونا بيتا
جُنيس  Sarbecovirus
الاسم العلمي
Severe acute respiratory syndrome-related coronavirus[1][2] 
السلالات
مرادفات
SARS coronavirus

SARS-related coronavirus

Severe acute respiratory syndrome coronavirus[8]


فيروس كورونا المرتبط بالمتلازمة التنفسية الحادة الشديدة (SARSr-CoV)[ملاحظة 1] هو نوع من فيروسات كورونا يصيب البشر والخفافيش وبعض الثدييات الأخرى.[9][10]، وهو فيروس رنا مفرد السلسلة موجب الاتجاه مغلف يدخل خلايا مضيفه عبر الارتباط بمستقبل ACE2. وينتمي إلى جنس فيروس كورونا بيتا والجنس الفرعي فيروس كورونا ساربي (Sarbecoronavirus).[11][12]

تسببت سلالتين من الفيروس في تفشيات لأمراض تنفسية شديدة لدى البشر: فيروس كورونا السارس (SARS-CoV) الذي تسبب في تفشي المتلازمة التنفسية الحادة الوخيمة (SARS) بين 2002 و2003، وفيروس كورونا السارس 2 الذي يُحدث منذ أواخر 2019 جائحة مرض فيروس كورونا 2019 (كوفيد 19).[13][14] توجد المئات من السلالات الأخرى من فيروس كورونا المرتبط بالمتلازمة التنفسية الحادة الشديدة، ومعروف بأن جميعها يصيب أنواعا غير بشرية. الخفافيش هي الخزان الرئيسي للعديد من سلالات فيروسات كورونا المرتبطة بالسارس، وتم تحديد العديد من السلالات في زباد النخل والتي على الأرجح هي أسلاف لفيروس كورونا السارس.[13][15]

فيروس كورونا المرتبط بالسارس هو أحد عدة فيروسات صنفتها منظمة الصحة العالمية في 2016 بأنها من الممكن أن تسبب وباء مستقبليا في مخطط جديد طُوِّر بعد وباء إيبولا للبحث والتطوير العاجل -قبل وأثناء الوباء- لاختبارات تشخيص، لقاحات وأدوية. تحقق هذا التنبؤ مع حدوث جائحة فيروس كورونا 2019–20.[16][17]

التصنيف

فيروس كورونا المرتبط بالسارس هو عضو من جنس فيروس كورونا بيتا (المجموعة 2) والجنس الفرعي فيروس كورونا ساربي (Sarbecovirus) (المجموعة الفرعية B).[18] فيروسات كورونا ساربي وعلى خلاف فيروسات كورونا إيمبي أو فيروسات كورونا ألفا لا تملك سوى ببتيداز شبيه بالباباين وحيد بدل اثنين في إطار القراءة المفتوح 1 (ORF1).[19] حُدِّد أن فيروس كورونا المرتبط بالسارس هو تفرعٌ باكرٌ من مجموعة فيروسات كورونا بيتا وذلك استنادا على مجموعة من النطاقات المحفوظة التي يشترك فيها مع المجموعة.[20][21]

الخفافيش هي المخزن المضيف الرئيسي لفيروس كورونا المرتبط بالسارس، حيث تطور الفيروس بشكل مشترك مع خفاش مضيف عبر مدة طويلة من الزمن.[22] ومؤخرا فقط، تطورت سلالات من فيروس كورنا المرتبط بالسارس وقامت بالانتقال عبر الأنواع من الخفافيش إلى البشر، كما هو الحال في سلالتي فيروس كورونا السارس، وفيروس كورونا السارس 2.[23][24] تنحدر كلا هاتين السلالتين من سلف واحد لكنهما قاما بالانتقال عبر الأنواع بشكل منفصل. فيروس كورونا السارس 2 ليس سليلا مباشرا من فيروس كورونا السارس.[13]

الجينوم

مخطط لتنظيم جينوم فيروس السارس (SARS-CoV) وبروتيناته الفيروسية.

فيروس كورونا المرتبط بالسارس هو فيروس رنا مفرد السلسلة موجب الاتجاه مغلف، طول جينومه حوالي 30 ألف قاعدة وهو أحد أطول فيروسات الرنا. يملك هذا الفيروس 14 إطار قراءة مفتوح متداخلة في بعض الحالات.[25] للجينوم قبعة 5' ممثيلة وذيل عديد أدينين 3'،[26] ويوجد 265 نوكليوتيد في المنطقة 5' غير المترجمة (5′UTR) و342 نوكليوتيد في المنطقة 3' غير المترجمة (3′UTR).[25]

تسمح القبعة 5' الممثيلة وذيل عديد الأدينين 3' لجينوم الرنا موجب الاتجاه بأن يُترجم مباشرة بواسطة ريبوسومات الخلية المضيفة عند دخول الفيروس.[27] فيروس كورونا المرتبط بالسارس مماثل لفيروسات كورونا الأخرى في أن التعبير عن جينومه يبدأ بترجمة ريبوسومات الخلية لإطاري القراءة المفتوحين الكبيرين المتداخلين 1a و1b الذين ينتج كلاهما عديد بروتين.[25]

وظيفة العديد من البروتينات الفيروسية معروفة.[28] حيث يشفر إطارا القراءة 1a و1b عديد البروتين الخاص ببوليميراز الرنا المعتمد على الرنا (ريبليكاز الرنا) المعروف كذلك باسم منتسخة الرنا (ترنسكريبتاز)، وتشفر إطارت القراءة: 2a و4a و5a و9a على التوالي البروتينات البنيوية الرئيسية الأربعة: الحسكة، الغلاف، الغشاء والقفيصة المنواة.[29] وتشفر إطارات القراءة التالية من 3a حتى 9b ثمانية بروتينات فريدة تعرف باسم البروتينات الملحقة أو الإضافية والتي لا يوجد نظير لمعظمها لدى فيروسات أخرى. الوظائف المختلفة للبروتينات الملحقة ليست مفهومة جيدا.[28]

وظيفة بروتينات جينوم فيروس السارس (SARS-CoV)
من إطار القراءة المفتوح 1a حتى 9b ‏(orf1a to orf9b).
إطار القراءة المفتوح الوظيفة[30][31][32]
orf1a وorf1b عديد بروتين ريبليكاز الرنا/ منتسخة الرنا (pp1ab)، نسخ الجينوم لإنشاء فيروسات أخرى.
(بروتين غير بنيوي)
orf2 بروتين الحسكة (S)، ارتباط الفيروس بالمستقبل ودخوله للخلية.
(بروتين بنيوي)
orf3a يتآثر مع البروتينات البنيوية: الحسكة S والغلاف E والغشاء M.
يملك نشاط قناة أيونية.
ينظم بالزيادة السيتوكينات والكيموكينات مثل إنترلوكين 8 وCCL5.
ينظم بالزيادة NF-κB و JNK النص الكامل متوفر في: http://talk.ictvonline.org/files/master-species-lists/m/msl/4911 — المحرر: اللجنة الدولية لتصنيف الفيروسات — العنوان : ICTV Master Species List 2013 v2
  • النص الكامل متوفر في: https://talk.ictvonline.org/files/master-species-lists/m/msl/5208 — المحرر: اللجنة الدولية لتصنيف الفيروسات — العنوان : ICTV Master Species List 2014 v4
  • النص الكامل متوفر في: https://talk.ictvonline.org/files/master-species-lists/m/msl/5945 — المحرر: اللجنة الدولية لتصنيف الفيروسات — العنوان : ICTV Master Species List 2015 v1
  • النص الكامل متوفر في: https://talk.ictvonline.org/files/master-species-lists/m/msl/6776 — المحرر: اللجنة الدولية لتصنيف الفيروسات — العنوان : ICTV Master Species List 2016 v1.3
  • النص الكامل متوفر في: https://talk.ictvonline.org/files/master-species-lists/m/msl/7185 — المحرر: اللجنة الدولية لتصنيف الفيروسات — العنوان : ICTV Master Species List 2017 v1
  • النص الكامل متوفر في: https://talk.ictvonline.org/files/master-species-lists/m/msl/7992 — المحرر: اللجنة الدولية لتصنيف الفيروسات — العنوان : ICTV Master Species List 2018a v1
  • النص الكامل متوفر في: https://talk.ictvonline.org/files/master-species-lists/m/msl/8266 — المحرر: اللجنة الدولية لتصنيف الفيروسات — العنوان : ICTV Master Species List 2018b.v2
  • "ICTV Taxonomy history: Severe acute respiratory syndrome-related coronavirus". International Committee on Taxonomy of Viruses (ICTV) (باللغة الإنجليزية). مؤرشف من الأصل في 22 فبراير 202027 يناير 2019.
  • Branswell H (9 November 2015). "SARS-like virus in bats shows potential to infect humans, study finds". Stat News. مؤرشف من الأصل في 21 فبراير 202020 فبراير 2020.
  • Wong AC, Li X, Lau SK, Woo PC (February 2019). "Global Epidemiology of Bat Coronaviruses". Viruses. 11 (2): 174. doi:10.3390/v11020174. PMC . PMID 30791586. Most notably, horseshoe bats were found to be the reservoir of SARS-like CoVs, while palm civet cats are considered to be the intermediate host for SARS-CoVs [43,44,45].
  • "Virus Taxonomy: 2018 Release". International Committee on Taxonomy of Viruses (ICTV) (باللغة الإنجليزية). October 2018. مؤرشف من الأصل في 9 مارس 202013 يناير 2019.
  • Woo PC, Huang Y, Lau SK, Yuen KY (August 2010). "Coronavirus genomics and bioinformatics analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC . PMID 21994708. Figure 2. Phylogenetic analysis of RNA-dependent RNA polymerases (Pol) of coronaviruses with complete genome sequences available. The tree was constructed by the neighbor-joining method and rooted using Breda virus polyprotein.
  • Coronaviridae Study Group of the International Committee on Taxonomy of Viruses (March 2020). "The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2". Nature Microbiology. doi:10.1038/s41564-020-0695-z. PMID 32123347.
  • Kohen, Jon; Kupferschmidth, Kai (28 February 2020). "Strategies shift as coronavirus pandemic looms". Science. 367 (6481): 962–963. doi:10.1126/science.367.6481.962. PMID 32108093.
  • Lau SK, Li KS, Huang Y, Shek CT, Tse H, Wang M, et al. (March 2010). "Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events". Journal of Virology. 84 (6): 2808–19. doi:. PMC . PMID 20071579.
  • Kieny M. "After Ebola, a Blueprint Emerges to Jump-Start R&D". Scientific American Blog Network. مؤرشف من الأصل في 20 ديسمبر 201613 ديسمبر 2016.
  • "LIST OF PATHOGENS". World Health Organization. مؤرشف من الأصل في 20 ديسمبر 201613 ديسمبر 2016.
  • Wong AC, Li X, Lau SK, Woo PC (February 2019). "Global Epidemiology of Bat Coronaviruses". Viruses. 11 (2): 174. doi:10.3390/v11020174. PMC . PMID 30791586. See Figure 1.
  • Woo PC, Huang Y, Lau SK, Yuen KY (August 2010). "Coronavirus genomics and bioinformatics analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC . PMID 21994708. See Figure 1.
  • Woo PC, Huang Y, Lau SK, Yuen KY (August 2010). "Coronavirus genomics and bioinformatics analysis". Viruses. 2 (8): 1804–20. doi:10.3390/v2081803. PMC . PMID 21994708. Furthermore, subsequent phylogenetic analysis using both complete genome sequence and proteomic approaches, it was concluded that SARSr-CoV is probably an early split-off from the Betacoronavirus lineage [1]; See Figure 2.
  • "Coronaviridae - Figures - Positive Sense RNA Viruses - Positive Sense RNA Viruses (2011)". International Committee on Taxonomy of Viruses (ICTV) (باللغة الإنجليزية). مؤرشف من الأصل في 16 يناير 202006 مارس 2020. See Figure 2.
  • Gouilh MA, Puechmaille SJ, Gonzalez JP, Teeling E, Kittayapong P, Manuguerra JC (October 2011). "SARS-Coronavirus ancestor's foot-prints in South-East Asian bat colonies and the refuge theory". Infection, Genetics and Evolution. 11 (7): 1690–702. doi:10.1016/j.meegid.2011.06.021. PMID 21763784. Betacoronaviruses-b ancestors, meaning SARSr-CoVs ancestors, could have been historically hosted by the common ancestor of the Rhinolophidae and Hipposideridae and could have later evolved independently in the lineages leading towards Rhinolophidae and Hipposideridae betacoronaviruses.
  • Cui J, Han N, Streicker D, Li G, Tang X, Shi Z, et al. (October 2007). "Evolutionary relationships between bat coronaviruses and their hosts". Emerging Infectious Diseases. 13 (10): 1526–32. doi:10.3201/eid1310.070448. PMC . PMID 18258002.
  • Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, et al. (November 2013). "Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor". Nature. 503 (7477): 535–8. Bibcode:2013Natur.503..535G. doi:10.1038/nature12711. PMC . PMID 24172901.
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. (August 2003). "Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage". Journal of Molecular Biology. 331 (5): 991–1004. doi:10.1016/S0022-2836(03)00865-9. PMID 12927536. The SARS-CoV genome is ∼29.7 kb long and contains 14 open reading frames (ORFs) flanked by 5′ and 3′-untranslated regions of 265 and 342 nucleotides, respectively (Figure 1).
  • Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (المحررون). Coronaviruses. 1282. Springer. صفحات 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466.
  • Fehr AR, Perlman S (2015). Maier HJ, Bickerton E, Britton P (المحررون). "An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization". Methods in Molecular Biology. Springer. 1282: 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466.
  • McBride R, Fielding BC (November 2012). "The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis". Viruses. 4 (11): 2902–23. doi:10.3390/v4112902. PMC . PMID 23202509.
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, Thiel V, Ziebuhr J, Poon LL, et al. (August 2003). "Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage". Journal of Molecular Biology. 331 (5): 991–1004. doi:10.1016/S0022-2836(03)00865-9. PMID 12927536. See Figure 1.
  • McBride R, Fielding BC (November 2012). "The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis". Viruses. 4 (11): 2902–23. doi:10.3390/v4112902. PMC . PMID 23202509. See Table 1.
  • Tang X, Li G, Vasilakis N, Zhang Y, Shi Z, Zhong Y, Wang LF, Zhang S (March 2009). "Differential stepwise evolution of SARS coronavirus functional proteins in different host species". BMC Evolutionary Biology. 9: 52. doi:10.1186/1471-2148-9-52. PMC . PMID 19261195.
  • Narayanan, Krishna; Huang, Cheng; Makino, Shinji (April 2008). "SARS coronavirus Accessory Proteins". Virus Research. 133 (1): 113–121. doi:10.1016/j.virusres.2007.10.009. ISSN 0168-1702. PMC . PMID 18045721. See Table 1.
  • Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. (February 2004). "Ultrastructural characterization of SARS coronavirus". Emerging Infectious Diseases. 10 (2): 320–6. doi:10.3201/eid1002.030913. PMC . PMID 15030705. Virions acquired an envelope by budding into the cisternae and formed mostly spherical, sometimes pleomorphic, particles that averaged 78 nm in diameter (Figure 1A).
  • Neuman BW, Adair BD, Yoshioka C, Quispe JD, Orca G, Kuhn P, et al. (August 2006). "Supramolecular architecture of severe acute respiratory syndrome coronavirus revealed by electron cryomicroscopy". Journal of Virology. 80 (16): 7918–28. doi:10.1128/JVI.00645-06. PMC . PMID 16873249. Particle diameters ranged from 50 to 150 nm, excluding the spikes, with mean particle diameters of 82 to 94 nm; Also See Figure 1 for double shell.
  • Lai MM, Cavanagh D (1997). "The molecular biology of coronaviruses". Advances in Virus Research. 48: 1–100. doi:10.1016/S0065-3527(08)60286-9.  . PMID 9233431.
  • Masters PS (2006-01-01). The molecular biology of coronaviruses. 66. Academic Press. صفحات 193–292. doi:10.1016/S0065-3527(06)66005-3.  . PMID 16877062. Nevertheless, the interaction between S protein and receptor remains the principal, if not sole, determinant of coronavirus host species range and tissue tropism.
  • Cui J, Li F, Shi ZL (March 2019). "Origin and evolution of pathogenic coronaviruses". Nature Reviews. Microbiology. 17 (3): 181–192. doi:10.1038/s41579-018-0118-9. PMID 30531947. Different SARS-CoV strains isolated from several hosts vary in their binding affinities for human ACE2 and consequently in their infectivity of human cells76,78 (Fig. 6b)
  • Fehr AR, Perlman S (2015). Maier HJ, Bickerton E, Britton P (المحررون). "An Overview of Their Replication and Pathogenesis; Section 2 Genomic Organization". Methods in Molecular Biology. Springer. 1282: 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466. See section: Virion Structure.
  • Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH (March 2014). "The SARS coronavirus nucleocapsid protein--forms and functions". Antiviral Research. 103: 39–50. doi:10.1016/j.antiviral.2013.12.009. PMID 24418573. See Figure 4c.
  • Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. (April 2011). "A structural analysis of M protein in coronavirus assembly and morphology". Journal of Structural Biology. 174 (1): 11–22. doi:10.1016/j.jsb.2010.11.021. PMC . PMID 21130884. See Figure 10.
  • Tok TT, Tatar G. "Structures and Functions of Coronavirus Proteins: Molecular Modeling of Viral Nucleoprotein" ( كتاب إلكتروني PDF ). مؤرشف من الأصل ( كتاب إلكتروني PDF ) في 18 فبراير 2020.
  • Lal SK, المحرر (2010). Molecular Biology of the SARS-Coronavirus. doi:10.1007/978-3-642-03683-5.  .
  • Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Mo S, Narykov O, Srinivasan S, Korkin D (January 2020). "Structural genomics and interactomics of 2019 Wuhan novel coronavirus, 2019-nCoV, indicate evolutionary conserved functional regions of viral proteins". bioRxiv. doi:10.1101/2020.02.10.942136.
  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Hu Y, et al. (January 2020). "Complete genome characterisation of a novel coronavirus associated with severe human respiratory disease in Wuhan, China". bioRxiv. doi:10.1101/2020.01.24.919183.
  • Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (المحررون). Coronaviruses. 1282. Springer. صفحات 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466. See section: Coronavirus Life Cycle – Attachment and Entry
  • Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S (December 2013). "Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research". Antiviral Research. 100 (3): 605–14. doi:10.1016/j.antiviral.2013.09.028. PMC . PMID 24121034. See Figure 2.
  • Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, Pöhlmann S (January 2014). "TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein". Journal of Virology. 88 (2): 1293–307. doi:10.1128/JVI.02202-13. PMC . PMID 24227843. The SARS-CoV can hijack two cellular proteolytic systems to ensure the adequate processing of its S protein. Cleavage of SARS-S can be facilitated by cathepsin L, a pH-dependent endo-/lysosomal host cell protease, upon uptake of virions into target cell endosomes (25). Alternatively, the type II transmembrane serine proteases (TTSPs) TMPRSS2 and HAT can activate SARS-S, presumably by cleavage of SARS-S at or close to the cell surface, and activation of SARS-S by TMPRSS2 allows for cathepsin L-independent cellular entry (26,–28).
  • Zumla A, Chan JF, Azhar EI, Hui DS, Yuen KY (May 2016). "Coronaviruses - drug discovery and therapeutic options". Nature Reviews. Drug Discovery. 15 (5): 327–47. doi:10.1038/nrd.2015.37. PMID 26868298. S is activated and cleaved into the S1 and S2 subunits by other host proteases, such as transmembrane protease serine 2 (TMPRSS2) and TMPRSS11D, which enables cell surface non-endosomal virus entry at the plasma membrane.
  • Li Z, Tomlinson AC, Wong AH, Zhou D, Desforges M, Talbot PJ, et al. (October 2019). "The human coronavirus HCoV-229E S-protein structure and receptor binding". eLife. 8. doi:10.7554/eLife.51230. PMC . PMID 31650956.
  • Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (المحررون). Coronaviruses. 1282. Springer. صفحات 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466. See Table 2.
  • Masters PS (2006-01-01). "The molecular biology of coronaviruses". Advances in Virus Research. Academic Press. 66: 193–292. doi:10.1016/S0065-3527(06)66005-3.  . PMID 16877062. See Figure 8.
  • Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (المحررون). Coronaviruses. 1282. Springer. صفحات 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466. See section: Replicase Protein Expression
  • Sexton NR, Smith EC, Blanc H, Vignuzzi M, Peersen OB, Denison MR (August 2016). "Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens". Journal of Virology. 90 (16): 7415–28. doi:10.1128/JVI.00080-16. PMC . PMID 27279608. Finally, these results, combined with those from previous work (33, 44), suggest that CoVs encode at least three proteins involved in fidelity (nsp12-RdRp, nsp14-ExoN, and nsp10), supporting the assembly of a multiprotein replicase-fidelity complex, as described previously (38).
  • Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (المحررون). Coronaviruses. 1282. Springer. صفحات 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466. See section: Corona Life Cycle – Replication and Transcription
  • Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (المحررون). Coronaviruses. 1282. Springer. صفحات 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466. See Figure 1.
  • Fehr AR, Perlman S (2015). "Coronaviruses: an overview of their replication and pathogenesis". In Maier HJ, Bickerton E, Britton P (المحررون). Coronaviruses. 1282. Springer. صفحات 1–23. doi:10.1007/978-1-4939-2438-7_1.  . PMC . PMID 25720466. See section: Coronavirus Life Cycle – Assembly and Release
  • قراءة متعمقة

    موسوعات ذات صلة :