مثلث مدمج في قطع مكافئ يشبه السرج.
الهندسة الزائدية أو الهندسة القطعية الزائدية (والتي تسمى أيضًا هندسة لوباتشيفسكي أو هندسة بولياي - لوباتشيفسكي) هي هندسة لاإقليدية، تقابل مسلمة التوازي في الهندسة الإقليدية. ففي مسلمة التوازي في الهندسة الإقليدية، في أي مستوى ثنائي الأبعاد، من أي نقطة خارج مستقيم ما، يمر مستقيم وحيد بتلك النقطة ولا يقطع المستقيم الأول (أي يوازي المستقيم المذكور). أما في الهندسة الزائدية، فهناك ما لا يقل عن خطين آخرين يمران بتلك النقطة خارج المستقيم ولا تقطعانه، وبالتالي فإن مسلمة التوازي في هذه الحالة يمكن تطبيقها. هناك نماذج تم إنشاؤها ضمن الهندسة الإقليدية، تتفق مع مسلمات الهندسة الزائدية، مما يثبت أن مسلمة التوازي تختلف عن غيرها من مسلمات إقليدس. خاصية مميزة للهندسة الزائدية هو أن زوايا المثلث في الهندسة الزائدية يمكن أن تكون أقل من 180°.[1]
مراجع
- Sommerville, D.M.Y. (2005). The elements of non-Euclidean geometry (الطبعة Unabr. and unaltered republ.). Mineola, N.Y.: Dover Publications. صفحة 58. .
وصلات خارجية
- Visions of Infinity: Tiling a hyperbolic floor inspires both mathematics and art Science News: Dec. 23, 2000; Vol. 158, No. 26/27, p. 408
- Lobachevsky, Nikolai I., Pangeometry, Edited and translated by Athanase Papadopoulos, Heritage of European Mathematics, 2010, Vol. 4. Zürich: European Mathematical Society (EMS). xii, 310~p, ISBN 978-3-03719-087-6k,
- Java freeware for creating sketches in both the Poincaré Disk and the Upper Half-Plane Models of Hyperbolic Geometry University of New Mexico
- "The Hyperbolic Geometry Song" على يوتيوبA short music video about the basics of Hyperbolic Geometry available at Youtube.
- إيريك ويستاين، Gauss-Bolyai-Lobachevsky Space، ماثوورلد Mathworld (باللغة الإنكليزية).
- More on hyperbolic geometry, including movies and equations for conversion between the different models University of Illinois at Urbana-Champaign
- Hyperbolic Voronoi diagrams made easy, Frank Nielsen
- Stothers, Wilson (2000). "Hyperbolic geometry". University of Glasgow. مؤرشف من الأصل في 06 سبتمبر 2012. , interactive instructional website.