الرئيسيةعريقبحث

مصفوفة قابلة للعكس


☰ جدول المحتويات


في الجبر الخطي، يقال عن مصفوفة مربعة A أنها قابلة للعكس (Invertible matrix)‏ إذا وُجدت مصفوفة مربعة B حيث:

حيث In هي مصفوفة الوحدة وحيث الجداء المشار إليه في هذه الصيغة هو جداء المصفوفات الاعتيادي.[1][2][3]

خصائص

مبرهنة المصفوفة القابلة للعكس

لتكن A مصفوفة بُعدها هو n*n عرفت على حقل K (مجموعة الأعداد الحقيقية مثالا). النصوص التالية متكافئة مع بعضها البعض. أي أنهن بالنسبة لمصفوفة ما، جميعهن خاطئات أو جميعهن صحيحات.

  • المصفوفة A قابلة للعكس،
  • لا حلول للمعادلة Ax = 0 غير الحل البديهي 0.
  • أعمدة المصفوفة A مستقلة خطيا.
  • AT المصفوفة المنقولة للمصفوفة A، هي مصفوفة قابلة للعكس. هذا يجعل صفوف المصفوفة A مستقلة خطيا أيضا كما هن أعمدتها.

مثال

لتكن المصفوفة التالية ذات البُعد الثاني:

هذه المصفوفة قابلة للعكس لكون محددها مختلفا عن الصفر. .

المصفوفة التالية غير قابلة للعكس لأن محددها يساوي الصفر:

كيا يظهر فيما يلي

طرق عكس مصفوفة

حذف غاوسي

حذف غاوس-جوردان هو خوارزمية تمكن أن تستعمل من أجل تحديد ما إذا كانت مصفوفة ما قابلة للعكس أم لا ومن أجل تحديد هذا العكس إ.ذا كان موجودا.

طريقة نيوتن

انظر إلى طريقة نيوتن

طريقة كايلي-هاميلتون

انظر إلى مبرهنة كايلي-هاميلتون

التفكيك إلى جداء القيم الذاتية

تطبيقات

مقالات ذات صلة

مراجع

وصلات خارجية

موسوعات ذات صلة :