الرئيسيةعريقبحث

مؤشر أويلر


☰ جدول المحتويات


لمعانٍ أخرى، انظر مؤشر (توضيح).
القيم الألف الأولى ل (φ(n

في نظرية الأعداد، مؤشر أويلر (Euler's totient function)‏ هو دالة معرفة على مجموعة الأعداد الطبيعية.[1][2][3] تستعمل في الرياضيات الخالصة وفي نظرية المجموعات وفي نظرية الأعداد الجبرية وفي نظرية الأعداد التحليلية. في الرياضيات التطبيقية، مروراً بالحسابيات التوافقية، تلعب دوراً مهماً في نظرية المعلومات وخاصة في التشفير. وتسمى دالة فاي لأويلر أو ببساطة دالة فاي، لأن الحرف φ مستعمل للإشارة لهذه الدالة.

وتحمل اسم الرياضي السوسري أويلر (1707 - 1783) الذي كان أول من درسها.

  • مؤشر أويلر φ هي دالة من مجموعة الأعداد الطبيعية نحو نفس المجموعة، حيث صورة n بالدالة هو عدد الأعداد الأصغر من n والأولية مع n.

مثلا, φ(8) = 4 لأن الأعداد 1, 3, 5 و7 أولية مع 8.

التاريخ والتسمية والرمز المستعل

حساب دالة أويلر

مثال

بعض من قيم الدالة

مبرهنة أويلر

تنص هذه المبرهنة على أنه إذا كان a و n عددين طبيعيين أوليين فيما بينهما، فإن:

الحالة الخاصة من هذه المبرهنة حينما يكون n أوليا تعرف باسم مبرهنة فيرما الصغرى.

انظر إلى مبرهنة لاغرانج (نظرية الزمر)

صيغ أخرى تحتوي على مؤشر أويلر

الدوال المولدة

نمو دالة مؤشر أويلر

النسبة بين قيمتين متتاليتين لمؤشر أويلر

تطبيقات

معضلات غير محلحلة

مقالات ذات صلة

مراجع

  1. "معلومات عن مؤشر أويلر على موقع britannica.com". britannica.com. مؤرشف من الأصل في 12 سبتمبر 2015.
  2. "معلومات عن مؤشر أويلر على موقع mathworld.wolfram.com". mathworld.wolfram.com. مؤرشف من الأصل في 13 يوليو 2019.
  3. "معلومات عن مؤشر أويلر على موقع oeis.org". oeis.org. مؤرشف من الأصل في 7 مارس 2019.


وصلات خارجية

موسوعات ذات صلة :