الرئيسيةعريقبحث

مضاعفة المكعب


☰ جدول المحتويات


مكعب أحادي (ضلعه مساو لواحد) ومكعب حجمة مساو لاثنين (ضلعه يساوي 32 = 1.2599210498948732… OEISA002580).

مسألة مضاعفة المكعب (وتعرف أيضاً بمسألة ديليان) هي واحدة من ثلاث مسائل في الهندسة الرياضية التي لا يمكن حلها بإنشاءات الفرجار والمسطرة. وقد كانت هذه المسألة معروفة من قبل المصريين، الإغريق، والهنود.[1]

مضاعفة المكعب تعني أنه من أجل مكعب ذو طول ضلع s وحجم V والمطلوب هو إنشاء مكعب جديد أكبر من الأول بحجم 2V وبالتالي يكون طول ضلع المكعب الجديد . المسألة معروفة بأنها مستحيلة الحل بإنشاءات الفرجار والمسطرة لأن من المستحيل إنشاء ضلع طوله بالمسطرة والفرجار.

برهان الاستحالة

التاريخ

في الموسيقى

مراجع

  1. Lucye Guilbeau (1930). "The History of the Solution of the Cubic Equation", Mathematics News Letter 5 (4), p. 8-12.

موسوعات ذات صلة :