مواضيع في الميكانيكا الكلاسيكية | |
ميكانيكا كلاسيكية (التاريخ) | |
قانون نيوتن الثاني | |
مصطلحات رياضية | |
جسيم نقطي | نظام إحداثي | متجه | جسم جاسيء | |
علم السكون | |
توازن ميكانيكي | قيد ميكانيكي | مبرهنة لامي | إجهاد القص | انفعال | إجهاد | |
علم الحركة | |
حركة انتقالية | حركة دورانية | سرعة | تسارع | سرعة خطية | سرعة زاوية | تسارع خطي | تسارع زاوي | |
علم التحريك | |
قوانين نيوتن الثلاثة للحركة | طاقة حركية| ميكانيكا تحليلية | طاقة كامنة | قوة | متجه | زخم أو كمية الحركة | دفع القوة | عزم | عطالة | عزم العطالة | عزم زاوي | تصادم | سقوط حر | ثقالة | قذف | |
قوانين الحفظ | |
بقاء الكتلة | بقاء القيمة | بقاء الطاقة | تكافؤ المادة والطاقة | مبرهنة نويثر | معادلة الاستمرار | لاتباين أو صمود |
ميكانيكا الهاميلتوني (Hamiltonian mechanics) هو إعادة صياغة للميكانيك الكلاسيكي تم إيجاده من قبل ويليام روان هاميلتون عام 1833، وقد نجحت النظرية في الخروج بنفس النتائج التي توقعتها الميكانيكا الكلاسيكية غير الهاميلوتنية، فالنظرية تستخدم صياغات رياضية مختلفة وتقدم فهماً أكثر تجريداً للميكانيكا الكلاسيكية، بالإضافة إلى أنها قدمت مساهمات هامة في مجال ميكانيكا الكم، نشأ ميكانيكا هاميلتون من ميكانيكا لاجرانج، وهو صياغة أخرى للميكانيكا الكلاسيكية وضعه جوزيف لويس لاغرانج عام 1788.[1] لكن بجميع الأحوال يمكن اشتقاق ميكانيكا هاملتون دون الرجوع لميكانيكا لاجرانج بإستخدام الفضاءات السمبلكتية symplectic spaces.
إعادة صياغة ميكانيك لاغرانج
اعتمادا على ميكانيك لاغرانج، تكون معادلات الحركة المستندة على الإحداثيات المعممة
والتي تطابق السرعات:
يمكن لنا كتابة اللاغرانجي
يهدف ميكانيك الهاميلتوني إلى استبدال متغيرات السرعة المعممة بمتغيرات العزم المعممة أو ما يدعى بالعزم المقترن أو المقابل:
من أجل كل سرعة معممة هناك ما يقابلها من العزم المقترن الذي يكتب كما يلي:
في جملة إحداثيات ديكارتية، العزم المعمم هو بالضبط العزم الفيزيائي الخطي . أما في جملة إحداثيات قطبية فإن العزم المعمم المقابل للسرعة الزاوية يصبح العزم الزاوي، في جملة احداثية افتراضية توجد صياغات أخرى لإيجاد العزم المعمم .
الهاميلتوني هو عبارة:
إذا كانت معادلات التحويل المعرفة للإحداثيات المعممة مستقلة عن الزمن t، فيمكن أن نقول ان الهاميلتوني H مساو للطاقة الكلية E = T + V.
كل طرف من تعريف الهاميلتوني of H ينتج تفاضلًا:
باستبدال التعريف السابق للعزم المقترن ضمن المعادلة ومطابقة معاملات المعدلة، نستخرج قوانين الحركة في الميكانيك الهاميلتوني
معادلات هاميلتون تشكل معادلات تفاضلية من المرتبة الأولى، لذا هي أسهل حلا من معادلات لاغرانج التي تعطي معادلات تفاضلية من المرتبة الثانية. لكن العمليات التي تقود إلى معادلات الحركة أكثر صعوبة فبداية علينا البدء من الإحداثيات المعممة وميكانيك لاغرانج لنقوم بتشكيل الهاميلتوني، ثم علينا تحويل كل قيمة لسرعة معممة إلى عزم مقترن، لنقوم بعد ذلك باستبدال السرع المعممة في الهاميلتوني بقيم العزم المقترن.
مراجع
- Hand, L. N.; Finch, J. D. (2008). Analytical Mechanics. Cambridge University Press. .