في الرياضيات، المضروب أو العاملي لعدد صحيح طبيعي n، والذي يكتب ، والذي يقرأ "عاملي n"، هو جداء كل الأعداد الطبيعية (الأعداد صحيحة الموجبة قطعا) المساوية أوالأصغر من n، ما عدا الصفر.[1][2][3]
فيما يلي مثال 5 عاملي :
و تعريف العاملي على شكل جداء يترتب عنه كون ذلك أن 0! جداء مفرغ، وبمعنى آخر مختصر اي عدد مضروب في صفر يساوي صفر في عملية الضرب.
تظهر دالة العاملي في مجالات مختلفة من الرياضيات، وخصوصا في التوافقيات والجبر والتحليل الرياضي. أبسط مثال على ذلك، وجود !n طريقة مختلفة لترتيب عناصر مجموعة عددهم مساو ل n (أي عدد التبديلات لعناصر هاته المجموعة). عرفت هذه الحقيقة على الأقل منذ القرن الثاني عشر الميلادي، من طرف علماء الرياضيات الهنديين. و يظهر العاملي في عدة معادلات رياضية، مثل صيغة الثنائي لنيوتن وصيغة تايلور. استعمل رمز علامة التعجب (!) للتعبير عن دالة عاملي لأول مرة من طرف عالم الرياضيات كريستيان كرامب وكان ذلك عام 1808.
يمكن لتعريف دالة عاملي أن يمدد إلى أعداد غير صحيحة بدون المساس بخصائص هاته الدالة. هذا العملية تستلزم تقنيات متطورة في الرياضيات وخصوصا تلك المستقاة من التحليل الرياضي.
تعريف
تعرف دالة عاملي بالصيغة التالية:
أو عن طريق الاستدعاء الذاتي كما يلي
وكلا التعريفين يضم المتساوية التالية :
تطبيقات
يمكننا التعبير عن التوفيقة بدلالة العاملي:
نظرية الأعداد
لدالة عاملي عدة تطبيقات في مجال نظرية الأعداد. وبشكل خاص، عاملي n قابل للقسمة على جميع الأعداد الأولية الأصغر من أو تساوي n. ونتيجة لذلك، فإن n> 5، عدد مؤلف، إذا وفقط إذا توفر ما يلي :
وهنالك نتيجة أقوى من ذلك تتمثل في مبرهنة ويلسون. تنص هاته المبرهنة على ما يلي:
إذا وفقط إذا كان p أوليا.
سرعة النمو وتقريبات عندما يصير n كبيرا
عندما يصير n كبيرا، تصير دالة عاملي أكبر من أي متعددة حدود ومن أي دالة أسية ل n.(ولكنها تبقى أبطأ من دالة الأس المزدوج).
أغلب التقريبات لعاملي n تعتمد أساسا على تقريب لوغارتمها الطبيعي كما تبين الصيغة :
.
تبيان الدالة (!f(n) = log(n مبين في يسار هاته الفقرة، حيث يبدو أنها خطية مع n (أي أنها متناسبة معه) إلا أن هذا الحدس خاطئ.
تعطينا صيغة ستيرلينغ مقاربا ل n! عندما تكون n كبيرة :
الحساب والبرمجة
يمكن حساب عاملي عدد ما باستعمال خوارزميات الاستقراء. فلنكتب باستعمال لغة Scheme، القريبة من لغة Lisp، برنامجا استقرائيا يعطينا عاملي عدد صحيح :
(define fact (lambda (x) (if (= x 0) 1 (* x (fact (- x 1))))))
و هذا البرنامج السابق غير مفيد في حالة الاعداد الكبيرة.
و بنفس الطريقة في Caml :
let rec fact n = match n with | 0 -> 1 | _ -> n * fact(n-1) ;;
و بطريقة أخرى:
let fact n = let rec aux n r = match n with | 0 -> r | _ -> aux (n-1) (n*r) in aux n 1 ;;
و في لغة سي:
int factorielle_recursive(int n) { if (n == 0) return 1; return n * factorielle_recursive(n-1); }
و بطريقة أخرى:
int factorielle_iterative(int n) { int res; for (res = 1; n> 1; n--) res *= n; return res; }
و في لغة بايثون:
def factSimple(num) : if num== 0 : return 1 else : fact= 1 count= 1 while count<= num: fact*= count count+= 1 return fact print("5! = " +str(factSimple(5))) #on the screen : 5! = 120
وبطريقة ثانية:
def fact(num): if num==0: return 1 else: return num*factorial(num-1) print("5! = " +str(fact(5))) #on the screen : 5! = 120
وبطريقة ثالثة:
factLambda = lambda num : num>0 and num*fact(num-1) or 1 print("5! = " +str(factLambda(5))) #on the screen : 5! = 120
و في لغة جافاسكربت:
function fect(n){ let res; for (res = 1; n > 1; n--) res *= n; return res; }
وبطريقة اخرى:
function fact(n) { if (n == 0) return 1; else return n * fact(n - 1); }
هذه الدوال (البرامج) لا تمكننا من حساب عملي أعداد أكبر من 12 إذا كانت الاعداد الصحيحة محدودة بـ 32 بت، لأن النتيجة تتعدى المساحة المتوفرة.
تمديد دالة عاملي للأعداد غير الصحيحة
دالتا غاما و π
- مقالة مفصلة: دالة غاما
لكل عدد صحيح n، لدينا حيث Γ هي دالة أويلر(دالة غاما) وضعها ليونهارد أويلر. وتمكننا هاته الدالة من تعميم العاملي على مجموعة الأعداد المركّبة باستثناء الأعداد السالبة قطعا. وفي النهاية نجد :
دوال وجداءات تشبه دالة عاملي
عاملي ثنائي
- مقالة مفصلة: عاملي ثنائي
يطلق على جداء جميع الأعداد الصحيحة من 1 إلى n والتي لها نفس الزوجية (سواء كان فردي أو زوجي) تماما مثل n، اسم العاملي الثنائي (Double factorial) للعدد n ويُشار إليه بـ n!!
يمكن أن نعرفها بواسطة متسلسلة الجداء:
حيث هو سقف العدد n.
على سبيل المثال، 9!! = 9 × 7 × 5 × 3 × 1 = 945.
عاملي متعدد
من الترميزات الشائعة ذات الصلة هي استخدام علامات تعجب متعددة للإشارة إلى عاملي متعدد (Multifactorial)، أنواعها: عاملي ثنائي (n!!)، عاملي ثلاثي (n!!!)، ... وهكذا.
يعرف العاملي المتعدد بـ:
عاملي الأعداد الأولية
- مقالة مفصلة: عاملي أعداد أولية
عاملي الأعداد الأولية (Primorial) للعدد n هو جداء جميع الأعداد الأولية أقل من أو يساوي n، يرمز إليها بـ n#.
نُعرّفه كمتسلسلة الجداء:
حيث p هي الأعداد الأولية.
مقالات ذات صلة
مراجع
- "معلومات عن عاملي على موقع britannica.com". britannica.com. مؤرشف من الأصل في 6 مايو 2016.
- "معلومات عن عاملي على موقع zthiztegia.elhuyar.eus". zthiztegia.elhuyar.eus. مؤرشف من الأصل في 10 ديسمبر 2019.
- "معلومات عن عاملي على موقع oeis.org". oeis.org. مؤرشف من الأصل في 7 مايو 2019.