في الهندسة الإقليدية، متوازي الأضلاع (أو الشبيه بالمعين)[1] (بالإنجليزية: Parallelogram) هو شكل رباعي الأضلاع فيه كل ضلعين متقابلين متوازيان. حيث يكون فيه كل ضلعين متوازيين متساويين بالطول وكل زاويتين متقابلتين متساويتين، وقطراه ينصفان بعضهما.ومجموع زواياه °360
متوازي الأضلاع | |
---|---|
متوازي الأضلاع شبه معين. | |
نوع | رباعي الأضلاع |
أضلاع ورؤوس | 4 |
مجموعة التناظر | C2 (2) |
المساحة |
B × H (جداء القاعدة B و الارتفاع H)؛ ab sin θ (جداء الضلع الأصغر والأكبر وجيب إحدى زواياه) |
خصائص | محدب |
خصائص متوازي الاضلاع
- كل ضلعين متقابلين متساويان.
- كل ضلعين متقابلين متوازيان.
- مساحة متوازي الأضلاع تساوي ضعف مساحة المثلث المشكل بضلعين وقطر.
- كل قطر في متوازي الأضلاع منصف للقطر الآخر.
- يتقاطع قطراه في نقطة تشكل مركز تناظر لمتوازي الأضلاع، وتسمى مركز متوازي الأضلاع.
- أي مستقيم يمر بمركز متوازي الأضلاع يقسمه إلى شكلين متطابقين.
- كل زاويتين متقابلتين متساويتان.
- مجموع مربعات أطوال الأضلاع تساوي مجموع مربعي طولي القطرين (هذا هو قانون متوازي الأضلاع).
- مجموع كل زاويتين متحالفتين (على ضلع واحد) °180.
إن تحقق واحد من الخصائص السابقة في مضلع رباعي محدب يعني أن الشكل متوازي أضلاع، كما أن إثبات أن ضلعين متقابلين متوازيين ومتقايسيين في آنٍ معاً يثبت أن الشكل متوازي أضلاع.[2][3]
المحيط
محيط متوازي أضلاع يحسب بالعلاقة: حيث a و b طولا أي ضلعين متجاورين فيه.
المساحة
لتكن K مساحة متوازي أضلاع.
تحسب مساحة متوازي أضلاع بمعرفة طولي القاعدة والارتفاع بالقانون: حيث b طول القاعدة، وهي أي ضلع في متوازي الأضلاع، وh الارتفاع وهو العمود النازل من الرأس المقابلة لذاك الضلع عليه.
كما تحسب أيضاً بمعرفة طولي ضلعين متجاورين وجيب زاوية بالقانون: حيث a، b طولا أي ضلعين متجاورين فيه، و x قياس أي زاوية فيه.
ويمكن حساب المساحة بمعرفة طولي القطرين وجيب زاوية محصورة بين القطرين بالقانون: حيث m، n طولا القطرين، وx قياس أي زاوية محصورة بينهما.
حساب مساحة متوازي أضلاع باستعمال إحداثيات رؤوسه
لتكن متجهتين و تدل على المصفوفة حيث عناصر a و b. إذن، مساحة متوازي الأضلاع المولد بالمتجهتين a و b تساوي .
لتكن متجهتين و لتكن . إذن، مساحة متوازي الأضلاع المولد بالمتجهتين a و b تساوي .
لتكن النقط . إذن، مساحة متوازي الأضلاع حيث الرؤوس في a و b و c مساوية للقيمة المطلقة لمحدد مصفوفة بُنيت باستعمال aو b و c صفوفا وحيث العمود الأخير أضيف باستعمال الواحدات كما يلي:
حالات خاصة من متوازي الأضلاع
- إذا تعامد قطراه، أو تساوى طولا ضلعين متجاورين فيه، عُدَّ الشكل معيناً.
- إذا تساوى قطراه أو كانت إحدى زواياه قائمةً، عُدَّ الشكل مستطيلاً.
- إذا كان الشكل مستطيلاً، ومعيناً في آن معاً، فإن الشكل مربع.
انظر أيضاً
مراجع
- محمد علي التهانوي. موسوعة كشاف اصطلاحات الفنون والعلوم. تحقيق علي دحروج، نقل النص الفارسي إلى العربية عبد الله الخالدي، الترجمة الأجنبية جورج زيناتي. الجزء الثاني. ص. 1913 - تصفح: نسخة محفوظة 25 أكتوبر 2014 على موقع واي باك مشين.
- Owen Byer, Felix Lazebnik and Deirdre Smeltzer, Methods for Euclidean Geometry, Mathematical Association of America, 2010, pp. 51-52.
- Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 22.