AccueilFrChercher
Exemple d'équilibre thermodynamique de deux systèmes, en l'occurrence deux phases : l'équilibre liquide-vapeur du brome.

En thermodynamique, un équilibre thermodynamique correspond à l'état d'un système ne subissant aucune évolution à l'échelle macroscopique. Les grandeurs intensives caractérisant ce système (notamment la pression, la température et les potentiels chimiques) sont alors homogènes dans l'espace et constantes dans le temps. Cet équilibre est stable s'il n'est pas susceptible d'évoluer sur une échelle de temps infinie, ou sous le coup d'une perturbation extérieure ou d'une fluctuation locale interne.

Tout système évolue selon les premier et deuxième principes de la thermodynamique, qui définissent les fonctions d'état énergie interne et entropie. Un équilibre thermodynamique est stable lorsque le système ne peut plus évoluer, car cela impliquerait une diminution de l'entropie contraire au deuxième principe. L'équilibre thermodynamique d'un système isolé (qui n'échange ni travail, ni chaleur, ni matière avec l'extérieur) est caractérisé par un maximum de l'entropie et un minimum de l'énergie interne. L'équilibre d'un système fermé (qui n'échange pas de matière avec l'extérieur) sous contrainte est caractérisé par le minimum d'un potentiel thermodynamique spécifique (qui est également une fonction d'état) correspondant à un maximum de l'entropie globale du système et de son extérieur.

L'entropie et les potentiels thermodynamiques possèdent en conséquence des caractéristiques de concavité ou de convexité qui déterminent le signe de certains coefficients calorimétriques et thermoélastiques, ainsi que certaines propriétés des potentiels chimiques des espèces constituant le système. D'autre part, deux systèmes en équilibre l'un avec l'autre ont atteint simultanément :

  • un équilibre mécanique lorsque les deux systèmes ont la même pression ;
  • un équilibre thermique lorsque les deux systèmes ont la même température ;
  • un équilibre diffusif lorsque chaque espèce chimique a le même potentiel chimique dans les deux systèmes.

Les équilibres de phases et les équilibres chimiques sont des exemples d'équilibres thermodynamiques. Ces principes expliquent également la coalescence des milieux dispersés, ceux-ci tendant à minimiser leur surface.

Définitions et principes généraux

Éléments de définition d'un équilibre thermodynamique

Définition de l'équilibre thermodynamique

Les états d'équilibre sont les objets d'étude de la thermodynamique. Un processus thermodynamique est une transformation d'un système passant d'un état d'équilibre à un autre. Une transformation réversible est effectuée par l'intermédiaire d'équilibres successifs, tandis qu'une transformation irréversible est effectuée via des états hors équilibre. Dans les faits, la définition d'un état d'équilibre est bien souvent circulaire : un système à l'équilibre thermodynamique est un système qui peut être décrit par les lois de la thermodynamique, tandis qu'un échec de la thermodynamique peut être interprété comme une preuve que le système n'est pas à l'équilibre[1].

L'équilibre thermodynamique peut être défini ainsi[1],[2],[3] :

Équilibre thermodynamique
État que tout système isolé atteint après un temps suffisamment long
et caractérisé macroscopiquement par un nombre fini de variables d'état.

Les variables, ou grandeurs, décrivant le système sont extensives : en général on considère le volume , l'énergie interne et les quantités , , etc. des espèces chimiques constituant le système. Les variables décrivant l'équilibre sont intensives : en général on considère la pression , la température et les potentiels chimiques , , etc. des espèces[2],[4]. Ces grandeurs intensives ne sont définies et mesurables qu'à l'équilibre[3].

On ajoute à cette définition la nécessité pour le système d'être homogène et isotrope, c'est-à-dire le fait que les grandeurs intensives sont identiques en tout point du système et ne dépendent pas de la direction selon laquelle le système est observé. Dans les faits, un système peut être à l'équilibre sans être homogène, comme dans le cas d'une colonne de liquide dans laquelle la pression dépend de l'emplacement dans la colonne. Le critère de l'homogénéité permet de simplifier la description thermodynamique du système et de son équilibre. D'autre part, les grandeurs décrivant l'équilibre sont invariantes dans le temps : le système n'évolue plus et ne peut plus évoluer.

Cette définition est issue d'observations courantes qui montrent qu'un système isolé a tendance à évoluer vers un état indépendant de son histoire. Dans la pratique, cette définition pose certaines difficultés, notamment quant à l'établissement d'un système isolé et quant à la durée d'observation nécessaire à l'obtention de l'équilibre.

Systèmes thermodynamiques

  • Dans la colonne d'un baromètre à mercure, la pression est quasi nulle au sommet et égale à la pression atmosphérique au pied, par effet de la gravité.
    Dans la colonne d'un baromètre à mercure, la pression est quasi nulle au sommet et égale à la pression atmosphérique au pied, par effet de la gravité.
  • Un ménisque est un effet de surface.
    Un ménisque est un effet de surface.
  • Un piston est un système fermé. Son enceinte ne laisse ni entrer ni sortir la matière. Par contre elle est déformable et laisse passer la chaleur.
    Un piston est un système fermé. Son enceinte ne laisse ni entrer ni sortir la matière. Par contre elle est déformable et laisse passer la chaleur.
  • Un tube en aluminium (5 mm d'épaisseur) ayant subi une pression extérieure de 700 bar.
    Un tube en aluminium (mm d'épaisseur) ayant subi une pression extérieure de 700 bar.
  • Le vase de Dewar est un récipient aux parois adiabatiques.
    Le vase de Dewar est un récipient aux parois adiabatiques.

Un système thermodynamique, ou système, est une portion de l'Univers délimitée par la pensée du reste de l'Univers, appelé système extérieur ou extérieur[5],[4]. La paroi, aussi appelée enceinte ou enveloppe, qui marque la frontière entre le système et l'extérieur, qui peut être virtuelle, détermine la nature du système selon les échanges qu'elle rend possibles au cours d'une transformation du système. Un système ouvert peut échanger de l'énergie (sous forme de travail et de chaleur) et de la matière avec l'extérieur. Un système fermé peut échanger de l'énergie mais pas de matière. Un système isolé n'échange ni énergie ni matière[4].

Ces divers types de système sont supposés être homogènes, ce qui signifie que les grandeurs intensives (pression, température, potentiels chimiques) qui décrivent un système sont identiques en tout point de ce système. Ceci implique que le système ne baigne pas dans un champ de force extérieur, notamment un champ électromagnétique ou gravitationnel. La gravité induit que la pression n'est pas homogène dans un système réel : dans une colonne de liquide, en raison des lois de l'hydrostatique, la pression est plus forte au fond de la colonne qu'en surface. Par exemple, 10 m de colonne d'eau induisent une différence de pression d'environ 1 bar, et la loi de Henry induit que les concentrations en gaz dissouts dans une telle colonne sont deux fois plus importantes au fond de la colonne qu'en surface. La gravité induit des gradients de pression et de concentration dans une colonne de liquide, qui n'est donc pas homogène. La gravité est un facteur moins influent pour les gaz, qui ont des masses volumiques plus faibles que les liquides. Le volume du système étudié doit par conséquent être suffisamment petit pour pouvoir, expérimentalement, négliger l'influence de champs de forces extérieurs, et notamment de la gravité.

Le volume doit toutefois rester suffisamment important pour éviter les effets de surface. En effet, la matière peut avoir un comportement altéré aux interfaces entre phases : entre un gaz et un liquide, entre les parois d'un récipient et son contenu. Des gradients de concentration peuvent, par exemple, s'établir à ces interfaces, des forces particulières (tension superficielle, etc.) peuvent y agir. Ces phénomènes sont cependant très localisés et négligeables sur des volumes suffisamment importants[6].

Un système fermé n'échange aucune matière avec l'extérieur. Sa paroi est imperméable, aucune matière ne peut la traverser. Par contre, cette paroi peut être déformable, le volume du système peut ainsi évoluer au cours de la transformation par le travail des forces de pression. De même, cette paroi peut laisser passer de la chaleur par conduction ou rayonnement. Un piston est un exemple typique de système fermé. Expérimentalement, l'obtention d'une étanchéité parfaite est le point le plus délicat d'un tel système. De plus, la paroi elle-même ne doit pas subir de dégradation au cours du temps, sous l'effet des déformations ou de la chaleur. Son matériau doit être inerte, il ne doit pas relarguer de composants vers le système, ou absorber des composants du système, ou réagir avec le contenu.

L'absence d'échange de travail avec l'extérieur suppose, outre l'absence d'un champ de force extérieur, que les forces de pression ne peuvent pas déformer le système, et donc que son volume reste constant au cours de la transformation. La paroi du système doit pouvoir résister, le cas échéant, à un vide poussé ou à de fortes pressions, tant à l'intérieur qu'à l'extérieur du système.

L'absence d'échange de chaleur du système avec son environnement est approximativement réalisable à l'aide d'isolants thermiques. Il n'existe pas d'isolant parfait, tout matériau laissant passer, à des degrés divers, de la chaleur par conduction ou rayonnement. La capacité d'un matériau à s'opposer à un flux thermique est appelée résistance thermique ; une transformation effectuée en l'absence d'échange de chaleur avec l'extérieur est dite « adiabatique » et suppose que les parois du système isolé ont une résistance thermique infinie. De tels matériaux n'existent pas, et les déperditions thermiques du système ne peuvent être négligées que sur des temps d'observation réduits[7].

Dans la pratique, un système isolé ne peut donc être réalisé que sur de petits volumes, afin de négliger l'influence de la gravité, mais suffisamment importants pour rendre les effets de surface négligeables. Sa paroi doit être totalement imperméable et inerte vis-à-vis du contenu et de l'extérieur du système, et résister à la différence de pression entre contenu et extérieur. Elle doit de plus empêcher toute déperdition thermique. Dans les faits, un tel système est idéal et n'existe pas, mais on peut obtenir des systèmes s'en approchant sur des temps relativement courts.

Échelle macroscopique, équilibre stationnaire

  • À l'échelle microscopique les molécules se déforment en permanence.
    À l'échelle microscopique les molécules se déforment en permanence.
  • À l'échelle microscopique les molécules se déplacent en permanence (mouvement brownien).
    À l'échelle microscopique les molécules se déplacent en permanence (mouvement brownien).
  • À l'échelle macroscopique aucun mouvement n'est observé.
    À l'échelle macroscopique aucun mouvement n'est observé.

En thermodynamique, la matière étudiée est le plus souvent constituée de particules telles que des molécules ou des ions. Ces structures composées d'atomes se déforment en permanence selon leurs degrés de liberté internes. Dans un fluide (liquide, gaz) ces espèces chimiques se déplacent en permanence (mouvement brownien) dans l'espace. Dans un solide les atomes vibrent en permanence autour d'une position moyenne. De même, dans les équilibres chimiques des espèces se transforment en permanence, des réactifs donnant des produits et réciproquement. Dans les équilibres de phases, des particules passent en permanence d'une phase à l'autre au niveau de l'interface entre phases. À l'échelle microscopique, les composants d'un système thermodynamique quelconque ne sont donc jamais figés dans l'espace et le temps. À cette échelle, un système thermodynamique subit en permanence des fluctuations spatiales et temporelles des grandeurs qui le décrivent[1],[2].

À l'échelle macroscopique ces fluctuations et mouvements ne sont pas perceptibles directement, mais sont reflétés par des grandeurs intensives telles que la pression, la température, les potentiels chimiques des espèces chimiques, etc. Lorsque ces grandeurs sont homogènes dans l'espace et constantes dans le temps, l'état du système est décrit comme étant celui d'un équilibre[2],[4]. Cet équilibre est qualifié d'équilibre stationnaire ou d'équilibre dynamique, car à l'échelle microscopique les échanges entre particules et les mouvements de celles-ci ont toujours lieu (au contraire d'un équilibre statique).

Ce sont donc les moyennes des grandeurs intensives mesurées qui décrivent son équilibre : localement, ces grandeurs fluctuent dans le temps et l'espace[2]. Ainsi, la thermodynamique décrit les états macroscopiques de la matière et énonce les lois qui régissent les échanges d'énergie entre de grands ensembles de particules. Elle ne dit rien sur le détail des interactions et mouvements à l'échelle microscopique, dont l'étude relève d'autres domaines de la physique.

Équilibre stable

  • Exemple d'équilibre chimique instable. Le diamant (à gauche) est une forme instable du carbone. Sur une très longue échelle de temps, le diamant se transforme en graphite (à droite).
    Exemple d'équilibre chimique instable. Le diamant (à gauche) est une forme instable du carbone. Sur une très longue échelle de temps, le diamant se transforme en graphite (à droite).
  • Exemple d'équilibre de phase métastable. La perturbation appliquée à cette eau liquide à température négative, en état de surfusion, déclenche son passage à l'état solide.

Certaines transformations extrêmement lentes conduisent à l'observation d'états hors équilibre, dits équilibres instables, qui peuvent paraitre stables sur une échelle de temps relativement longue[1]. Ainsi le diamant est-il une forme instable du carbone : il tend naturellement à se transformer en graphite, qui est la forme stable dans les conditions normales de température et de pression, mais cette réaction n'est observable qu'à des échelles de temps géologiques. De même, des phénomènes de diffusion de la matière peuvent être extrêmement lents et non observables sur des temps courts, l'équilibre apparent observé est également instable.

Certains états observés sont des états hors équilibre qui perdurent dans le temps jusqu'à ce qu'une perturbation déclenche une transformation souvent violente : ces états sont dits équilibres métastables[4]. Par exemple, un mélange d'hydrogène et d'oxygène peut rester stable dans le temps, mais une simple étincelle déclenche une réaction violente qui produit de l'eau. De même, l'eau peut être maintenue liquide en dessous de 0 °C à pression atmosphérique : cet état est appelé état de surfusion, il suffit alors de l'introduction d'une poussière ou d'une fluctuation de température pour que l'eau se solidifie brutalement. Des solutions liquides peuvent contenir un soluté (gaz ou solide) dissout en état de sursaturation, c'est-à-dire à des concentrations plus importantes que celles décrites par la thermodynamique, jusqu'à ce qu'une perturbation déclenche un phénomène brutal de désaturation (respectivement un dégazage et une précipitation) permettant d'établir l'état d'équilibre stable de la solution, l'état de saturation prédit par la thermodynamique.

Un équilibre stable peut donc se définir comme étant un état non susceptible d'évoluer sur une échelle de temps infinie, ni sous le coup d'une perturbation extérieure ou d'une fluctuation locale interne[2],[8],[4].

Principes de la thermodynamique

Premier principe de la thermodynamique

Le premier principe de la thermodynamique est un principe de conservation de l'énergie interne, notée .

Premier principe de la thermodynamique

Au cours d'une transformation quelconque, la variation de l'énergie interne d'un système fermé
est égale à la somme du travail et de la chaleur échangés par le système avec l'extérieur :

En conséquence, l'énergie interne d'un système isolé ne varie pas au cours de la transformation, soit :

L'énergie interne d'un système isolé est invariante : .

Si un système fermé, d'énergie interne , et son extérieur, d'énergie interne , forment ensemble un système isolé, alors l'énergie globale du système isolé est invariante : . Ainsi, l'une des deux énergies et peut varier du moment que l'autre énergie compense cette variation par une variation opposée.

Deuxième principe de la thermodynamique

Le deuxième principe de la thermodynamique est un principe d'évolution de la transformation ayant lieu dans le système. Ce principe introduit la notion d'entropie, notée .

Pour un système fermé échangeant de la chaleur avec un autre système, l'entropie est définie par l'inégalité de Clausius :

Entropie, inégalité de Clausius :

avec la température absolue. La transformation est[9] :

  • réversible si  ;
  • irréversible si .

Dans un système isolé, n'échangeant pas de chaleur avec l'extérieur, soit , un processus réversible se traduit donc par et un processus irréversible par . Le deuxième principe de la thermodynamique énonce que :

Deuxième principe de la thermodynamique

Au cours d'une transformation quelconque, l'entropie d'un système isolé ne peut qu'augmenter :

Soit un système fermé ou isolé, siège d'une transformation quelconque impliquant un échange de chaleur à température . On note[10],[11],[12] :

avec :

  • la variation d'entropie du système due à la transformation ;
  • la variation d'entropie due exclusivement à l'échange de chaleur avec l'extérieur ; est l'entropie d'échange ;
  • la génération d'entropie (aussi appelée création ou production d'entropie), liée à l'irréversibilité de la transformation ; est l'entropie d'irréversibilité.

Le terme peut être positif (le système gagne de la chaleur), nul (processus adiabatique) ou négatif (le système perd de la chaleur). Le terme ne peut être que positif (dans une transformation irréversible) ou nul (dans une transformation réversible). On note également :

Le terme est appelé travail non compensé ou chaleur non compensée. Il ne peut être que positif ou nul[11],[12].

Si est négatif, l'entropie d'un système fermé peut diminuer, soit . On note l'entropie de l'extérieur de ce système. En vertu du deuxième principe, le système et son extérieur formant un système isolé, l'entropie globale ne peut qu'augmenter, soit . L'entropie du système peut donc diminuer si la variation d'entropie de l'extérieur compense cette diminution de telle sorte que . Si l'entropie du système fermé diminue, l'entropie de l'extérieur ne peut qu'augmenter de façon que l'entropie globale du système isolé augmente. Inversement, l'entropie de l'extérieur peut également diminuer si l'entropie du système fermé augmente et si l'entropie globale du système isolé augmente.

Potentiels thermodynamiques

Considérons un système fermé, appelé « système » par la suite, subissant une transformation quelconque. Ce système et son extérieur forment ensemble un système isolé qui possède son propre extérieur. Nous posons :

  • la pression, en considérant que le système et son extérieur sont constamment à la même pression, celle-ci pouvant évoluer ;
  • la température, en considérant que le système et son extérieur sont constamment à la même température, celle-ci pouvant évoluer ;
  • le volume du système ;
  • le volume de l'extérieur du système.

Par définition, le système isolé n'échange pas de travail avec son propre extérieur. Il n'y a donc aucune force de pression pour déformer son volume  : le travail . Le volume du système étudié peut donc évoluer au cours de la transformation en respectant la contrainte :

Pour le système, nous considérons :

  • qu'il produit un travail des forces de pression égal à  ;
  • qu'il est le siège d'une transformation potentiellement irréversible, soit  ; il peut s'agir, entre autres :
    • du travail d'une force utile non récupéré, qui est alors dégradé en chaleur ;
    • de travaux de forces non récupérables, telles que les frottements ou la viscosité, qui sont également dégradés en chaleur ;
    • d'une réaction chimique ou d'un phénomène diffusif.

On pose : . Le terme représente la variation d'énergie due à la transformation du système fermé. Ce terme doit être négatif selon le deuxième principe, il s'agit de l'opposé de la chaleur non compensée : . La variation de l'énergie interne du système vaut en conséquence :

Pour le système : (1)

Pour l'extérieur, nous considérons :

  • qu'il produit un travail des forces de pression égal à  ;
  • qu'il reçoit la chaleur émise par le système et que la transformation est réversible : .

La variation de l'énergie interne de l'extérieur vaut en conséquence :

Pour l'extérieur :

En application du premier principe, puisque le système et l'extérieur forment un système isolé, l'énergie globale est conservée :

Premier principe : (2)

En application du deuxième principe, puisque le système et l'extérieur forment un système isolé, l'entropie globale ne peut que croître :

Deuxième principe : (3)

À partir des relations (1), (2) et (3), on appelle potentiel thermodynamique une fonction d'état, notée de façon générique , telle que[13] :

Potentiel thermodynamique

On vérifie l'inégalité de Clausius : .

Les divers potentiels thermodynamiques sont créés en fixant certaines conditions de la transformation[13] :

à volume et entropie constants :  ;
  • énergie libre, ou fonction de Helmholtz,  :
à volume et température constants :  ;
  • enthalpie  :
à pression et entropie constantes :  ;
  • enthalpie libre, ou fonction de Gibbs,  :
à pression et température constantes : .

Au cours de la transformation, l'une des deux entropies et peut décroître, du moment que l'entropie globale du système isolé croît. Les potentiels thermodynamiques ne peuvent que décroître.

Convexité des fonctions thermodynamiques

Concavité de l'entropie

Exemple de fonction concave à deux variables présentant un maximum. Si l'on joint deux points de cette surface par un segment de droite, celui-ci se situe au-dessous de l'arc de surface de mêmes coordonnées.

Les variables de l'entropie sont toutes extensives : volume , énergie interne , quantité de matière , etc. On les note de façon générique À l'équilibre, l'entropie est elle-même une fonction extensive : si l'on met en contact deux systèmes et à l'équilibre, alors l'entropie globale du système résultant vaut . À contrario, si les deux systèmes fusionnés ne sont pas à l'équilibre, il y a, en vertu du deuxième principe, création d'entropie au cours du processus de fusion, et, lorsque le nouveau système a atteint l'équilibre, on a[14],[15] : .

Considérons deux systèmes thermodynamiques quelconques isolés, notés et , par exemple deux phases différentes, deux réservoirs de réactifs chimiques, deux solides à températures différentes, etc. Chacun de ces deux systèmes est à l'équilibre thermodynamique indépendamment de l'autre. Ils ont respectivement pour entropie[14],[15] :

On prélève une fraction quelconque (comprise entre 0 et 1) du système et une fraction du système . Les variables de l'entropie étant extensives, ces fractions de systèmes et sont définies respectivement par des fractions des variables initiales :

L'entropie étant elle-même extensive à l'équilibre, les entropies de ces deux fractions de systèmes sont des fractions des entropies des systèmes et initiaux et valent respectivement[14],[15] :

Ces deux fractions sont mises en contact de façon à former un nouveau système isolé . Puisque les variables de l'entropie sont toutes extensives, elles s'additionnent. En particulier, en vertu du premier principe, le nouveau système étant isolé, son énergie interne ne peut pas évoluer et ne peut qu'être égale à . Le nouveau système est par conséquent défini par les variables :

et son entropie est une fonction telle que[14],[15] :

Si les deux fractions sont déjà à l'équilibre thermodynamique entre elles au moment de leur mise en contact, alors le nouveau système n'évolue pas et a pour entropie . Si les deux fractions ne sont pas immédiatement à l'équilibre entre elles, alors le nouveau système est le siège d'une transformation (par exemple un transfert de chaleur, une diffusion de matière d'un sous-système à l'autre, une réaction chimique…). En vertu du deuxième principe, l'entropie du nouveau système ne peut qu'augmenter au cours de cette transformation et, lorsque celui-ci a atteint l'équilibre, ne peut qu'être supérieure à la somme des entropies des deux fractions. À l'équilibre de ce nouveau système on a par conséquent[14],[15] :

L'entropie est donc une fonction concave[16] par rapport à ses variables naturelles[17]. En termes mathématiques, la matrice hessienne de l'entropie est définie négative[16], d'où[14],[15],[18],[19] :

L'entropie est une fonction concave :

Convexité de l'énergie interne

Exemple de fonction convexe à deux variables présentant un minimum. Si l'on joint deux points de cette surface par un segment de droite, celui-ci se situe au-dessus de l'arc de surface de mêmes coordonnées.

On considère un système fermé siège d'une transformation quelconque, que l'on traduit par le terme dans la différentielle du premier ordre de [20] :

Les variables sont les mêmes pour l'énergie interne et l'entropie. Les variables de l'énergie interne (volume, entropie, quantité de matière, etc.) sont par conséquent toutes extensives. On a la différentielle du deuxième ordre de l'énergie interne :

Pour l'entropie on a, par réagencement de  :

Par substitution de on obtient :

Par conséquent :

Puisque la température thermodynamique ne peut être que positive, alors et sont de signes opposés. L'entropie étant une fonction concave, l'énergie interne est une fonction convexe[16] par rapport à ses variables naturelles. En termes mathématiques, la matrice hessienne de l'énergie interne est définie positive[16], d'où[21] :

L'énergie interne est une fonction convexe :

Convexité des autres potentiels thermodynamiques

Exemple de fonction convexe-concave à deux variables présentant un point-selle. Cette fonction est convexe par rapport à sa variable et concave par rapport à sa variable .

Les potentiels thermodynamiques sont des transformées de Legendre de l'énergie interne . Cette transformation remplace une variable extensive de par une variable intensive du potentiel thermodynamique résultant, tout en inversant la convexité de la fonction par rapport à cette variable. En conséquence, les potentiels thermodynamiques sont concaves par rapport à leur(s) variable(s) intensive(s) et convexes par rapport à leurs variables extensives (voir la section Notations et outils mathématiques)[22],[23] :

  • l'énergie interne est convexe par rapport à toutes ses variables, qui sont toutes extensives : volume , entropie , quantité de matière , etc. ;
  • l'énergie libre est concave par rapport à la température et convexe par rapport au volume , à la quantité de matière , etc. ;
  • l'enthalpie est concave par rapport à la pression et convexe par rapport à l'entropie , la quantité de matière , etc. ;
  • l'enthalpie libre est concave par rapport à la pression et la température , et convexe par rapport à la quantité de matière , etc.

Les potentiels thermodynamiques , et sont donc des fonctions convexes-concaves.

Conditions d'établissement d'un équilibre stable

Entropie et énergie interne

Soit un système fermé n'échangeant avec l'extérieur que le travail des forces de pression et de la chaleur . Le terme générique représente le travail de forces autres que les forces de pression, ou une réaction chimique, etc., ce travail non récupéré étant dégradé en chaleur. Les variables sont toutes extensives (par exemple les quantités des diverses espèces présentes). L'énergie interne du système varie donc selon :

et son entropie selon :

Le système évolue selon les premier et deuxième principes de la thermodynamique :

Évolution

L'entropie est concave :

L'énergie interne est convexe :

Équilibre d'un système isolé

Évolution d'un système isolé

Un système isolé n'échange ni travail, soit , ni chaleur, soit , ni matière avec l'extérieur. En l'absence d'un travail de forces de pression échangé avec l'extérieur, soit , le système évolue à volume constant, soit . En l'absence de tout autre échange avec l'extérieur, l'énergie interne et l'entropie de celui-ci ne varient pas. Selon le premier principe de la thermodynamique, le système isolé évolue à énergie interne constante. On obtient :

Le système isolé évolue selon :

Évolution

Les différentielles du deuxième ordre donnent :

À l'équilibre l'entropie du système n'évolue plus, soit . Ainsi, à l'équilibre :

À l'équilibre

On étudie la variation d'un paramètre quelconque du système à partir de cet équilibre.

Principe de l'entropie maximale

Figure 1 - Condition d’équilibre stable d'un système isolé selon l'entropie.
À partir du point d'équilibre stable E, à énergie interne constante (plan jaune), toute variation d'un paramètre de l'équilibre ne peut induire qu'une diminution de l'entropie : l'entropie a atteint un maximum au point E.

À l'équilibre on a et , qui se traduisent, à volume et énergie interne constants, pour toute variation d'un paramètre quelconque, par :

À l'équilibre l'entropie atteint donc un maximum (voir la figure 1). Toute variation à partir de cet équilibre, à volume et énergie interne constants, d'un paramètre quelconque ne peut que faire diminuer l'entropie, ce qu'interdit le deuxième principe de la thermodynamique. Le système ne peut plus évoluer, l'équilibre est stable, d'où le principe de l'entropie maximale[24],[25],[26] :

Principe de l'entropie maximale

L'état d'équilibre stable d'un système isolé est caractérisé par une entropie maximale :
condition d'équilibre,
condition de stabilité.

Principe de l'énergie interne minimale

Figure 2 - Condition d’équilibre stable d'un système isolé selon l'énergie interne.
À partir du point d'équilibre stable E, à entropie constante (plan jaune), toute variation d'un paramètre de l'équilibre ne peut induire qu'une augmentation de l'énergie interne : l'énergie interne a atteint un minimum au point E.

À l'équilibre on a et , qui se traduisent, à volume et entropie constants, pour toute variation d'un paramètre quelconque, par :

À l'équilibre, l'énergie interne correspond donc à un minimum (voir la figure 2). Toute variation à partir de cet équilibre, à volume et entropie constants, d'un paramètre quelconque ne peut que faire augmenter l'énergie interne, ce qu'interdit le premier principe de la thermodynamique. Le système ne peut plus évoluer, l'équilibre est stable, d'où le principe de l'énergie minimale[27],[28] :

Principe de l'énergie interne minimale

L'état d'équilibre stable d'un système isolé est caractérisé par une énergie interne minimale :
condition d'équilibre,
condition de stabilité.

Équilibre d'un système fermé sous contrainte

Évolution d'un système fermé

Un système fermé échange du travail et de la chaleur avec l'extérieur, mais pas de matière[4]. On considère qu'il forme avec l'extérieur un système isolé, aussi évolue-t-il selon :

entropie globale croissante :
énergie interne globale invariante :

soit :

Évolution

À l'équilibre on a :

À l'équilibre
entropie globale maximale : et
énergie interne globale minimale : et

L'extérieur constitue un réservoir qui permet de maintenir constantes certaines caractéristiques du système fermé étudié. Ce réservoir est supposé suffisamment grand, en regard du système étudié, pour que les échanges avec le système ne modifient pas de façon significative ses propres caractéristiques, qui sont donc considérées comme constantes au cours de la transformation. Par exemple, un réacteur (système étudié) en équilibre de pression et de température avec l'atmosphère (extérieur) reste constamment à pression et température atmosphériques, qui ne varient pas. L'atmosphère reçoit le travail des forces de pression et la chaleur du réacteur, mais cet apport d'énergie est bien insuffisant pour modifier sa pression et sa température. L'extérieur impose donc des contraintes au système fermé étudié.

Au cours de cette transformation, l'une des deux entropies et peut décroître, du moment que l'entropie globale du système isolé croît.

À volume et entropie constants

Pour un système évoluant à volume et entropie du système constants, soit et , on a :

Évolution

L'entropie du système est constante, mais l'entropie de l'extérieur augmente. Le système évolue spontanément dans le sens d'une diminution de l'énergie interne , mais l'énergie interne globale est constante. Dans ces conditions, l'énergie interne est convexe. Lorsque l'équilibre est atteint, ne varie plus, alors :

À l'équilibre
et

Par conséquent[28] :

Dans une transformation à volume et entropie constants, l'énergie interne d'un système fermé diminue.
L'équilibre stable est caractérisé par un minimum de .

À volume et température constants

On introduit l'énergie libre du système :

Pour un système évoluant à volume et température constants, soit et , on a :

Évolution

L'entropie globale augmente. Le système évolue spontanément dans le sens d'une diminution de l'énergie libre . Dans ces conditions, l'énergie libre est convexe. Lorsque l'équilibre est atteint, ne varie plus, alors :

À l'équilibre
et

Par conséquent[29] :

Dans une transformation à volume et température constants, l'énergie libre d'un système fermé diminue.
L'équilibre stable est caractérisé par un minimum de .

À pression et entropie constantes

On introduit l'enthalpie du système :

Pour un système évoluant à pression et entropie constantes, soit et , on a :

Évolution

L'entropie du système est constante, mais l'entropie de l'extérieur augmente. Le système évolue spontanément dans le sens d'une diminution de l'enthalpie . Dans ces conditions, l'enthalpie est convexe. Lorsque l'équilibre est atteint, ne varie plus, alors :

À l'équilibre
et

Par conséquent[30] :

Dans une transformation à pression et entropie constantes, l'enthalpie d'un système fermé diminue.
L'équilibre stable est caractérisé par un minimum de .

À pression et température constantes

On introduit l'enthalpie libre du système :

Pour un système évoluant à pression et température constantes, soit et , on a :

Évolution

L'entropie globale augmente. Le système évolue spontanément dans le sens d'une diminution de l'enthalpie libre . Dans ces conditions, l'enthalpie libre est convexe. Lorsque l'équilibre est atteint, ne varie plus, alors :

À l'équilibre
et

Par conséquent[31] :

Dans une transformation à pression et température constantes, l'enthalpie libre d'un système fermé diminue.
L'équilibre stable est caractérisé par un minimum de .

Implications

Conditions de stabilité

Expression des conditions de stabilité

La concavité de l'entropie et la convexité de l'énergie interne induisent que leurs dérivées secondes, ainsi que celles des autres potentiels thermodynamiques, doivent répondre à certaines contraintes, notamment quant à leur signe (voir la section Notations et outils mathématiques). L'équilibre d'un système dans lequel l'une de ces dérivées secondes ne vérifie pas ces contraintes ne peut être stable, car il enfreint le deuxième principe de la thermodynamique. Ainsi les critères de convexité de l'entropie et des potentiels thermodynamiques induisent-ils les conditions de stabilité d'un système. Les conditions données ci-dessous sont toutefois nécessaires, mais pas suffisantes.

Dans les expressions ci-dessous, le théorème de Schwarz permet d'écrire, pour l'entropie comme pour tout potentiel thermodynamique, et pour deux variables quelconques : . Ainsi, les conditions données pour sont également valables pour .

Les conditions de stabilité relatives aux dérivées partielles secondes de l'entropie sont :

Conditions de stabilité selon l'entropie
(csS1) :  ; (csS2) :  ; (csS3) :
(csS4) :  ; (csS5) :
(csS6) :  ; (csS7) :

L'entropie est une fonction concave par rapport à toutes ses variables, qui sont toutes extensives[18].

Les conditions de stabilité relatives aux dérivées partielles secondes des potentiels thermodynamiques sont[23] :

Conditions de stabilité selon l'énergie interne
(csU1) :  ; (csU2) :  ; (csU3) :
(csU4) :  ; (csU5) :
(csU6) :  ; (csU7) :


Conditions de stabilité selon l'énergie libre
(csF1) :  ; (csF2) :  ; (csF3) :
(csF4) :  ; (csF5) :


Conditions de stabilité selon l'enthalpie
(csH1) :  ; (csH2) :  ; (csH3) :
(csH4) :  ; (csH5) :


Conditions de stabilité selon l'enthalpie libre
(csG1) :  ; (csG2) :  ; (csG3) :
(csG4) :  ; (csG5) :

Conclusions générales

En résumé, pour tout potentiel thermodynamique , étant les variables naturelles de , dont et  :

  • si est intensive (pression, température) :
Les potentiels thermodynamiques sont concaves par rapport à leurs variables naturelles intensives[22],[23] ;
  • si est extensive (volume, entropie, quantité de matière) :
Les potentiels thermodynamiques sont convexes par rapport à leurs variables naturelles extensives[22],[23] ;
, soit .
Cette contrainte donne une indication sur la valeur absolue de la dérivée croisée, mais pas sur son signe ;
  • si est intensive et extensive, il n'y a pas de condition sur la dérivée croisée .

Soit la variable conjuguée[32] de  :

Variable conjuguée :

On note la variation de induite par une modification de à constantes :

On a donc, pour toutes variables constantes :

Les conditions de stabilité donnent si est intensive, et si est extensive. Par conséquent tout système évolue, à constantes, selon :

Si est intensive, alors .
Si est extensive, alors .

En conclusion :

La modification d'une variable intensive induit
une modification opposée de sa variable conjuguée[32] extensive .
La modification d'une variable extensive induit
une modification dans le même sens de sa variable conjuguée intensive .

Exemple 1 - Évolutions réciproques de la pression et du volume.

  • Selon (edeV) et l'enthalpie libre , la variable conjuguée de la pression est le volume : . La pression étant une variable intensive, une augmentation de pression, à température et composition constantes, induit une diminution du volume, variable extensive. Il s'agit de la conséquence de (csG1).
  • Selon (edeP) et l'énergie libre , la variable conjuguée du volume est l'opposé de la pression : . Le volume étant une variable extensive, une augmentation du volume, à température et composition constantes, induit une augmentation de , variable intensive, soit une diminution de la pression. Il s'agit de la conséquence de (csF1).

Soit une variable de différente de . On note la variation de induite par une modification de à constantes :

On a donc, pour toutes variables constantes :

et étant différentes, le signe de n'est pas imposé par les conditions de stabilité, que ces deux variables soient simultanément ou non extensives ou intensives. Le signe de n'est donc pas défini, il peut être positif ou négatif. En conclusion :

Il est impossible de prévoir le sens de variation de en fonction d'une modification d'une autre variable du potentiel thermodynamique .

Exemple 2 - Évolution du volume en fonction de la quantité d'un produit.

Le signe du volume molaire partiel d'un corps dans un mélange n'est pas imposé par les conditions de stabilité. Avec (edeV), soit , on a . Il n'y a pas de contrainte de signe sur cette dérivée croisée : on ne peut prévoir la variation de en fonction de la quantité de l'espèce . Le volume molaire partiel d'un corps peut être aussi bien positif (le volume d'un mélange augmente lorsque l'on ajoute ) que négatif (le volume d'un mélange diminue lorsque l'on ajoute ), ce qui est toutefois assez rare[33]. Par exemple, lorsque l'on dissout 0,1 mole de sulfate de magnésium MgSO4 dans un litre d'eau, le volume de la solution obtenue est inférieur à un litre. Le volume se contracte par addition de MgSO4, son volume molaire partiel est donc négatif[34].
Par ailleurs, le théorème de Schwarz donne avec la définition (mu) . Il est donc également impossible de prévoir l'évolution d'un potentiel chimique en fonction de la pression .

Coefficients calorimétriques et thermoélastiques

Capacité thermique.
En raison de sa capacité thermique positive, une bouillote accumule de la chaleur lorsque sa température augmente.
Compressibilité.
En raison de sa compressibilité positive, le volume d'un corps diminue lorsque la pression extérieure augmente.

Parmi les coefficients calorimétriques et thermoélastiques sont définis :

  • la capacité thermique isochore  ; étant donné les équations d'état (edeS) et (edeT) on a :
Les conditions de stabilité (csF2) et (csU2) donnent[35],[36] :
(csCV) :
Les conditions de stabilité (csH1) et (csU1) donnent[35],[36] :
(csChiS) :
  • un coefficient sans nom  ; étant donné l'équation d'état (edeP) on a :
La condition de stabilité (csU4) donne :
(csLambda) :
  • la capacité thermique isobare  ; étant donné les équations d'état (edeS) et (edeT) on a :
Les conditions de stabilité (csG2) et (csH2) donnent[35],[36] :
(csCP) :
Les conditions de stabilité (csG1) et (csF1) donnent[35],[36] :
(csChiT) :
La condition de stabilité (csG4) donne :
(csAlpha) :

Les capacités thermiques et positives correspondent aux observations communes : un corps absorbe de la chaleur lorsque sa température augmente et en restitue lorsqu'elle diminue. De même, le volume d'un corps diminue sous l'effet de la pression : les coefficients de compressibilité et sont positifs. La thermodynamique n'interdit pas que ces coefficients soient négatifs, mais un corps présentant de telles propriétés serait instable considéré seul car il diminuerait l'entropie, en contradiction avec le deuxième principe de la thermodynamique : une telle situation est donc difficilement observable. Cependant des coefficients négatifs peuvent être observés dans un contexte impliquant des phénomènes compensant cette instabilité. En physique stellaire la stabilité des étoiles est expliquée par une capacité thermique négative due à l'attraction gravitationnelle entre ses constituants. Une étoile génère par fusion nucléaire plus d'énergie qu'elle ne peut en rayonner, ce qui, avec une capacité thermique positive, induirait une telle accumulation de chaleur, et donc une telle augmentation de température, que l'étoile serait instable et mourrait rapidement. La capacité thermique négative permet d'accumuler la chaleur tout en maintenant une température stable[37]. D'autre part, des coefficients de compressibilité négatifs ont été observés sur des mousses métalliques et des cristaux composés d'eau et de méthanol, ces phénomènes étant expliqués par l'architecture des cristaux à l'échelle moléculaire[38],[39],[40].

Le volume d'un corps augmente généralement sous l'effet d'une augmentation de la température, aussi le coefficient de dilatation isobare est-il le plus souvent positif. Néanmoins, la relation (csAlpha) n'impose pas le signe de ce coefficient, qui peut donc être négatif pour un corps stable[41]. L'eau liquide en est un exemple entre 0 °C et 4 °C sous 1 atm : une augmentation de la température provoque une contraction du volume, d'où un maximum de densité à 4 °C, constituant une anomalie dilatométrique[42]. Si l'on considère la variation du volume en fonction de la pression, de la température et de la composition, on a :

Les conditions de stabilité donnent mais ne donnent pas le signe de et , qui peuvent donc être positifs ou, plus rarement, négatifs.

Potentiel chimique

Les conditions de stabilité (csU3), (csF3), (csH3), (csG3), avec les définitions (mu), donnent respectivement[43] :

Conditions de stabilité
(csMu1) :  ; (csMu2) :
(csMu3) :  ; (csMu4) :

Le potentiel chimique d'une espèce chimique quelconque augmente lorsque l'on augmente la quantité de cette espèce, les quantités des autres constituants restant constantes (en l'absence de réaction chimique), et ce quelles que soient les autres conditions opératoires également maintenues constantes.

Les conditions de stabilité (csU5), (csU6), (csF4) et (csH4), avec les définitions (mu), les équations d'état (edeP) et (edeT), et le théorème de Schwarz, donnent respectivement, pour toute espèce chimique  :

Conditions de stabilité
(csMu5) :
(csMu6) :
(csMu7) :
(csMu8) :

Ces conditions montrent, entre autres, qu'il est impossible de prévoir la variation de la pression ou de la température d'un système en fonction de la variation (ajout ou extraction en l'absence de réaction) de la quantité de l'un de ses constituants . Autrement dit, lors de l'ajout d'un constituant à un système, toutes choses étant égales par ailleurs, la pression et la température peuvent indifféremment augmenter ou diminuer dans un système stable.

Les conditions de stabilité (csU7), (csF5), (csH5) et (csG5), avec les définitions (mu) et le théorème de Schwarz, donnent respectivement, pour deux espèces chimiques et quelconques :

Conditions de stabilité
(csMu9) :
(csMu10) :
(csMu11) :
(csMu12) :

Ces conditions montrent qu'il est impossible de prévoir l'évolution du potentiel chimique d'un constituant dans un mélange en fonction de la variation de la quantité d'un autre constituant , toutes choses étant égales par ailleurs.

Équilibre d'un système hétérogène

Conditions générales d'équilibre

On considère un système isolé hétérogène : il peut être subdivisé en plusieurs sous-systèmes ayant chacun sa propre pression, sa propre température et ses propres potentiels chimiques. Il peut s'agir par exemple de phases différentes, mais il peut également s'agir de deux zones distinctes au sein d'une même phase (par exemple une barre de métal ayant des températures différentes aux deux extrémités). Soit deux sous-sytèmes notés et . Le système global isolé subit une transformation afin d'atteindre l'équilibre. On écrit pour chacun des deux sous-systèmes la variation d'énergie interne[44] :

avec la grandeur relative au sous-système . Soit, pour le système isolé global, les fonctions globales énergie interne globale , entropie globale , volume global et quantité globale de chacun des corps . On a les relations sur le système global isolé, en l'absence de réaction chimique[44] :

  • (premier principe de la thermodynamique) ;
  • (deuxième principe de la thermodynamique) ;
  • (absence de travail des forces de pression) ;
  • pour tout (conservation de la matière).

Les grandeurs globales du système global isolé (de l'ensemble constitué par les deux sous-systèmes) sont constantes (hormis l'entropie), mais les grandeurs propres à chacun des deux sous-systèmes, elles, peuvent varier au cours de la transformation, leurs variations étant opposées. Par exemple, le volume global du système isolé, , est constant, mais les volumes des sous-systèmes et peuvent varier et .

On obtient les relations globales d'évolution du système isolé :

Évolution

L'équilibre est atteint lorsque l'entropie globale du système atteint un maximum. Les variations d'entropie des deux sous-systèmes sont alors liées par : . On peut donc écrire pour le système global à l'équilibre[45],[44] :

À l'équilibre

Quand les deux sous-systèmes sont à l'équilibre, cela ne signifie pas qu'il n'y a pas d'échanges entre eux. Les deux sous-systèmes continuent à échanger de la matière et de l'énergie, mais globalement les échanges se font dans les deux sens et se compensent : l'état d'équilibre obtenu est qualifié de dynamique ou stationnaire (voir la section Échelle macroscopique, équilibre stationnaire). Les variations , et pour tout sont donc non nulles à l'équilibre. La relation précédente implique par conséquent l'homogénéité des potentiels mécanique (pression), thermique (température) et chimiques (potentiels chimiques) entre les deux sous-systèmes à l'équilibre[44] :

  •  ;
  •  ;
  • pour tout .

Une autre façon d'obtenir ce résultat est de considérer que lorsque l'équilibre est atteint, c'est-à-dire lorsque l'entropie du système isolé est maximale (voir la figure 1), alors l'énergie globale du système isolé (constante) correspond à un minimum par rapport aux diverses variables du système (voir la figure 2), ce qui implique que :

  •  ;
  •  ;
  • pour tout .

Les conditions d'équilibre sont donc données par[44] :

Conditions d'équilibre de deux sous-systèmes et
Équilibre mécanique homogénéité de la pression
Équilibre thermique homogénéité de la température
Équilibre diffusif homogénéité des potentiels chimiques pour tout corps  :

Si le système contient un troisième sous-système , celui-ci doit être à l'équilibre avec les sous-systèmes et  : il sera par conséquent à l'équilibre aux mêmes pression, température et potentiels chimiques. Ces conditions sont donc généralisables à plus de deux sous-systèmes en équilibre (gaz-liquide-liquide ou gaz-liquide-solide par exemple, ou multiples phases liquides[46] ou solides).

Note sur l'homogénéité des potentiels chimiques

L'homogénéité des potentiels chimiques signifie que pour le corps 1 , pour le corps 2 , … , pour le corps , mais pas que ces potentiels sont égaux entre corps différents : .

En conséquence, si deux sous-systèmes d'un système isolé ont des températures différentes, celles-ci tendent à s'homogénéiser par transfert thermique (transfert de chaleur). De même, si à un instant donné une espèce chimique quelconque a des potentiels chimiques différents en deux points de ce système, alors par diffusion les potentiels chimiques tendent à s'homogénéiser. Par exemple, au sein d'une même phase, des concentrations ou des fractions molaires ou massiques tendent à s'égaliser en tout point. Dans la plupart des cas, l'équilibre mécanique s'établit très rapidement, suivi par l'équilibre thermique. L'équilibre diffusif, ou chimique, peut être beaucoup plus lent à atteindre[44].

Le transfert thermique

Équilibre thermique.
Deux corps à des températures différentes sont mis en contact. Ils échangent de la chaleur. La température la plus haute baisse, la plus basse augmente. À l'équilibre thermique les deux températures sont égales, l'échange de chaleur cesse.

Lorsqu'un milieu est hétérogène en température, celle-ci n'est pas identique en tout point du milieu. Spontanément, de la chaleur migre des zones de température élevée vers les zones de température plus basse : l'entropie du système est ainsi maximisée, conformément au deuxième principe de la thermodynamique. Ce phénomène est appelé transfert thermique.

On considère un système isolé divisé en deux compartiments, et , séparés par une paroi fixe diathermane[47],[48]. Le seul échange possible entre ces deux compartiments est donc un transfert thermique, soit un échange de chaleur. Le volume du système global ne varie pas en l'absence de travail des forces de pression avec l'extérieur, et les volumes des compartiments sont également invariants par la fixité de la paroi.

Il n'est fait aucune hypothèse quant aux pressions, compositions et phases des compartiments, qui peuvent donc être différentes d'un compartiment à l'autre. Les pressions peuvent évoluer au cours de la transformation. On suppose que les compositions sont invariantes en l'absence de réaction chimique.

La variation d'énergie de chacun des compartiments vaut, en considérant que les transformations n'impliquent que de la chaleur :

Le système étant isolé, on a les relations :

  • (premier principe, énergie globale ) ;
  • (deuxième principe, entropie globale ).

Les températures absolues et étant positives, la première relation induit que les entropies et des deux compartiments varient en sens inverses : . En conséquence et varient également en sens inverses : si l'une augmente, l'autre diminue. On obtient finalement :

À énergie interne constante

On suppose que la température du compartiment est plus importante que celle du compartiment , soit . La température absolue étant positive et, selon le deuxième principe de la thermodynamique, l'entropie du système ne pouvant qu'augmenter, soit , alors , d'où , et  : la chaleur diminue dans le compartiment et augmente dans le compartiment . En conséquence, la chaleur migre du compartiment , dans lequel la température est la plus élevée, vers le compartiment , de moindre température. Cette relation ne permet pas de déterminer les variations des températures et des deux compartiments.

Les deux compartiments évoluant à volume constant et en l'absence de réaction chimique, on a par définition des capacités thermiques isochores et respectives des deux compartiments :

La condition de stabilité (csCV) donne :

Puisque et , on a et . Dans le compartiment , où elle est la plus élevée, la température diminue. Elle augmente dans le compartiment , où elle est la plus basse. Au cours du transfert thermique, l'écart tend donc à diminuer.

Le transfert thermique cesse lorsque les températures des deux compartiments sont égales, soit , d'où . L'entropie ne varie plus et le système atteint un équilibre. Si l'entropie continuait à diminuer, alors continuerait à diminuer et à augmenter, d'où et . De même, si l'entropie augmentait à partir de cet équilibre, soit , alors augmenterait et diminuerait, d'où et . L'entropie globale , à partir de l'équilibre atteint, ne peut que diminuer, ce qui est contraire au deuxième principe de la thermodynamique : l'entropie a donc atteint un maximum et ne peut plus évoluer, cet équilibre est stable (voir la figure 1 avec ).

Si l'on considère une transformation à entropie constante (), alors :

À entropie constante

Un raisonnement similaire à celui tenu à énergie constante montre que toute évolution de dans ces conditions à partir de l'équilibre (, d'où ) ne peut induire qu'une augmentation de l'énergie interne globale , soit , ce qui est contraire au premier principe de la thermodynamique : l'énergie interne a donc atteint un minimum, cet équilibre est stable (voir la figure 2 avec ).

Pour résumer, si deux compartiments sont mis en contact de telle sorte qu'ils ne puissent échanger que de la chaleur, la chaleur passe du compartiment de plus haute température à celui de moindre température. La température la plus haute diminue et la plus basse augmente. L'équilibre thermique est atteint lorsque les deux températures s'égalisent. L'entropie du système a alors atteint un maximum et son énergie interne un minimum.

Le principe zéro de la thermodynamique

Principe zéro de la thermodynamique.
Une paroi adiabatique ne laisse pas passer la chaleur, contrairement à une paroi diathermane. Si A et C sont initialement en équilibre thermique, ainsi que B et C, alors, après inversion des parois, A et B sont immédiatement en équilibre thermique, sans besoin d'échanger de la chaleur.

Le principe zéro de la thermodynamique énonce que[49],[50] :

Principe zéro de la thermodynamique
Si deux systèmes A et B sont en équilibre thermique stable avec un troisième C,
ils sont eux-mêmes en équilibre thermique stable.

Pour l'état initial, on a les deux équilibres, entre A et B d'une part, et B et C d'autre part :

On a alors . Lorsque l'on met en contact A et B, les deux systèmes sont immédiatement à l'équilibre, puisque :

Comme vu dans la section Le transfert thermique, à partir de cet équilibre l'entropie du système A+B ne peut que diminuer, ce qu'interdit le deuxième principe de la thermodynamique. Le système A+B est donc d'emblée à l'équilibre thermique stable, sans qu'un transfert thermique soit nécessaire pour l'établir. Ainsi le principe zéro de la thermodynamique se déduit-il des premier et deuxième principes[50].

Ce principe permet de définir la notion de température comme une grandeur caractéristique de l'état d'équilibre thermodynamique. Tous les corps à la même température sont en équilibre thermique. En conséquence, le thermomètre est un instrument qui permet de vérifier cet équilibre[51].

La diffusion de la matière

Diffusion de la matière.
Dans un système isolé, une espèce chimique (ici en rouge) migre d'un compartiment où son potentiel chimique est élevé vers un compartiment où son potentiel est plus bas (figure supérieure). La migration cesse lorsque le potentiel chimique de l'espèce est homogène dans le système (figure inférieure).

Lorsqu'un milieu est hétérogène en composition, le potentiel chimique d'au moins une espèce chimique n'est pas identique en tout point du milieu. Spontanément, chaque espèce migre vers les lieux où son potentiel chimique est le plus bas : l'entropie du système est ainsi maximisée, conformément au deuxième principe de la thermodynamique. Ce phénomène est appelé diffusion de la matière, ou migration.

On considère un système isolé divisé en deux compartiments et séparés par une paroi. Cette paroi n'est perméable qu'à la seule espèce chimique . Elle peut être mobile : le volume de chacun des deux compartiments peut varier, mais le volume global du système, en l'absence de travail des forces de pression avec l'extérieur, est constant. Ces deux compartiments sont supposés être en permanence à l'équilibre mécanique (même pression ) et à l'équilibre thermique (même température ). On suppose enfin que la pression et la température sont constantes et que le système n'est le siège d'aucune réaction chimique.

Il n'est fait aucune hypothèse quant aux autres espèces chimiques du système, qui peuvent donc être différentes d'un compartiment à l'autre, ou à des concentrations différentes de part et d'autre de la paroi. Les deux compartiments peuvent être dans des phases différentes.

La variation d'énergie de chacun des compartiments vaut, en considérant que seule la quantité de l'espèce varie dans les compartiments :

Le système étant isolé, en l'absence de réaction, on a les relations :

  • (premier principe, énergie globale ) ;
  • (deuxième principe, entropie globale ) ;
  • (absence de travail des forces de pression) ;
  • (conservation de la matière).

Les quantités et dans les deux compartiments varient donc en sens inverses : , si l'une augmente, l'autre diminue. On obtient finalement[52] :

À énergie interne constante

On suppose que le potentiel chimique de l'espèce est plus important dans le compartiment que dans le compartiment , soit . La température absolue étant toujours positive et, selon le deuxième principe de la thermodynamique, l'entropie du système ne pouvant qu'augmenter, soit , alors , d'où  : la quantité de diminue dans le compartiment et augmente dans le compartiment . En conséquence, le corps migre du compartiment , dans lequel son potentiel est le plus important, vers le compartiment , de moindre potentiel. Cette relation ne permet pas de déterminer les variations des potentiels chimiques et dans les deux compartiments.

Les deux compartiments évoluant à pression et température constantes, et en l'absence de réaction chimique, on a les variations des potentiels chimiques dans les deux compartiments :

La condition de stabilité (csMu4) donne :

Puisque et , on a et . Dans le compartiment , où il est le plus élevé, le potentiel chimique diminue. Il augmente dans le compartiment , où il est le plus bas. Au cours de la migration, l'écart tend donc à diminuer.

La migration cesse lorsque les potentiels des deux compartiments sont égaux, soit , d'où . L'entropie ne varie plus et le système atteint un équilibre. Si la quantité continuait à diminuer, alors continuerait à diminuer et à augmenter, d'où