Praséodyme | |||||||||||
Praséodyme dans une ampoule contenant de l'argon. | |||||||||||
| |||||||||||
Position dans le tableau périodique | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symbole | Pr | ||||||||||
Nom | Praséodyme | ||||||||||
Numéro atomique | 59 | ||||||||||
Groupe | – | ||||||||||
Période | 6e période | ||||||||||
Bloc | Bloc f | ||||||||||
Famille d'éléments | Lanthanide | ||||||||||
Configuration électronique | [Xe] 4f3 6s2 | ||||||||||
Électrons par niveau d’énergie | 2, 8, 18, 21, 8, 2 | ||||||||||
Propriétés atomiques de l'élément | |||||||||||
Masse atomique | 140,907 66 ± 0,000 02 u[1] | ||||||||||
Rayon atomique (calc) | 185 pm (247 pm) | ||||||||||
Rayon de covalence | 203 ± 7 pm[2] | ||||||||||
État d’oxydation | 3 | ||||||||||
Électronégativité (Pauling) | 1,13 | ||||||||||
Oxyde | Base | ||||||||||
Énergies d’ionisation[3] | |||||||||||
1re : 5,473 eV | 2e : 10,55 eV | ||||||||||
3e : 21,624 eV | 4e : 38,98 eV | ||||||||||
5e : 57,53 eV | |||||||||||
Isotopes les plus stables | |||||||||||
Propriétés physiques du corps simple | |||||||||||
État ordinaire | solide | ||||||||||
Masse volumique | 6,773 g·cm-3[1] | ||||||||||
Système cristallin | Hexagonal compact | ||||||||||
Couleur | blanc argenté | ||||||||||
Point de fusion | 931 °C[1] | ||||||||||
Point d’ébullition | 3 520 °C[1] | ||||||||||
Énergie de fusion | 6,89 kJ·mol-1 | ||||||||||
Énergie de vaporisation | 296,8 kJ·mol-1 | ||||||||||
Volume molaire | 20,8×10-6 m3·mol-1 | ||||||||||
Pression de vapeur | 1,333 224×10-6 Pa (1 193 K) | ||||||||||
Vitesse du son | 2 280 m·s-1 à 20 °C | ||||||||||
Chaleur massique | 193 J·kg-1·K-1 | ||||||||||
Conductivité électrique | 1,48×106 S·m-1 | ||||||||||
Conductivité thermique | 12,5 W·m-1·K-1 | ||||||||||
Divers | |||||||||||
No CAS | |||||||||||
No ECHA | 100.028.291 | ||||||||||
Précautions | |||||||||||
SGH[4] | |||||||||||
Danger |
|||||||||||
Unités du SI & CNTP, sauf indication contraire. | |||||||||||
Le praséodyme est un élément chimique, de symbole Pr et de numéro atomique 59.
Le praséodyme est un métal, couleur gris argent, du groupe des terres rares. Il fait partie de la famille des lanthanides. À température ambiante, il est ductile, malléable et s'oxyde lentement à l'air. On le conserve dans de l'huile minérale, car il réagit fortement avec l'eau.
Son nom vient des mots grecs prason (πράσον - « le poireau ») et didymos (δίδυμος - « jumeau »), en raison de la couleur verte de son nitrate.
Les chimistes ont longtemps cru que le mélange d'oxyde de praséodyme-néodyme était un corps simple jusqu'à ce que Carl Auer von Welsbach les sépare en 1885.
Propriétés physiques
Le praséodyme est un métal doux, argenté, malléable et ductile du groupe des lanthanides. Il est un peu plus résistant à la corrosion dans l'air que l'europium, le lanthane, le cérium et le néodyme mais il produit une couche verte d'oxyde peu adhérente qui éclate lorsqu'elle est exposée à l'air[5]. Le métal est ainsi exposé de nouveau à l'oxydation. On conserve donc, en général, le praséodyme, sous huile ou en ampoules scellées.
Au contraire d'autres métaux de terres rares qui se montrent antiferromagnétiques et/ou ferromagnétiques à basse température, Pr est paramagnétique à n'importe quelle température supérieure à 1 K[6].
Propriétés chimiques
Le praséodyme métallique ternit lentement à l'air et brûle à 150 °C pour former les oxydes de praséodyme (III et IV):
- 12 Pr + 11 O2 → 2 Pr6O11
Le praséodyme est relativement électropositif et réagit lentement avec de l'eau froide et plus rapidement avec de l'eau chaude pour former l'hydroxyde de praséodyme :
- 2 Pr (s) + 6 H2O (l) → 2 Pr(OH)3 (aq) + 3 H2 (g)
Le praséodyme métallique réagit avec tous les halogènes.
- 2 Pr (s) + 3 F2 (g) → 2 PrF3 (s) [vert]
- 2 Pr (s) + 3 Cl2 (g) → 2 PrCl3 (s) [vert]
- 2 Pr (s) + 3 Br2 (g) → 2 PrBr3 (s) [vert]
- 2 Pr (s) + 3 I2 (g) → 2 PrI3 (s) [vert]
Il se dissout facilement dans l'acide sulfurique dilué pour constituer une solution qui contient les ions verts de Pr(III) sous forme de complexes [Pr(H2O)9]3+
- 2 Pr (s) + 3 H2SO4 (aq) → 2 Pr3+(aq) + 3 SO42− (aq) + 3 H2 (g)
Composés
Dans ses composés, le praséodyme se présente dans les états +2, +3 et/ou +4. Le praséodyme(IV) est un oxydant puissant, il oxyde l'eau instantanément en oxygène (O2) ou l'acide chlorhydrique en chlore. Ainsi en solution aqueuse, l'état d'oxydation +3 est le maximum.
Les sels de praséodyme sont jaune verdâtre et, en solution, montrent un simple spectre d'absorption dans la région visible avec une bande dans le jaune orangé à 589-590 nm et trois bandes dans la région bleu/violet à 444, 468 et 482 nm environ. Ces positions varient légèrement selon le contre-ion. L'oxyde de praséodyme lorsqu'il est obtenu par calcination de sels comme l'oxalate ou le carbonate dans l'air est de couleur noire (avec des reflets brun-vert) et contient du praséodyme +3 et +4 dans une proportion variable dépendant des conditions de la réaction. Sa formule est conventionnellement écrite : Pr6O11.
Les composés moléculaires de praséodyme se trouvent principalement dans l'état d'oxydation +III comme tout autre lanthanide. Plusieurs exemples contiennent un ion praséodyme(II)[7]. Au contraire, il existe uniquement un exemple de composé moléculaire de Pr(IV)[8].
Autres composés du praséodyme
Isotopes
Naturellement, le praséodyme est composé d'un isotope stable, le 141Pr ; ce qui en fait un élément monoisotopique. Trente huit radioisotopes ont été caractérisés dont le plus stable est 143Pr avec une demi-vie de 13,57 jours et 142Pr avec une demi-vie de 19,12 heures. Tous les autres isotopes radioactifs ont une demi-vie moindre que 6 heures et la majorité a une demi-vie moindre que 33 secondes. Cet élément a aussi six isomères nucléaires, les plus stables étant 138mPr (t½ 2,12 heures), 142mPr (t½ 14,6 minutes) and 134mPr (t½ 11 minutes).
La plage de poids atomiques des isotopes va de 120,955 u (121Pr) à 158,955 u (159Pr). Le premier type de désintégration avant l'isotope stable, 141Pr, est une capture électronique et le premier type après cet isotope est une radioactivité bêta. Le premier produit de radioactivité avant 141Pr sont les isotopes de l'élément 58 (cérium) et les produits primaires après 141Pr sont les isotopes de l'élément 60 (néodyme).
Histoire
Découvertes des terres rares. | ||||||||||||||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||||||||||||||
Diagrammes des découvertes des terres rares. Les dates entre parenthèses sont les dates d'annonces des découvertes[9]. Les branches représentent les séparations des éléments à partir d'un ancien (l'un des nouveaux éléments conservant le nom de l'ancien, sauf pour le didyme). |
En 1841, Carl Gustaf Mosander sépare la terre rare didyme de l'oxyde de lanthane. En 1874, Per Teodor Cleve découvre que le didyme est en fait deux éléments et, en 1879, Lecoq de Boisbaudran isole une nouvelle terre, le samarium du didyme extrait du minerai samarskite. En 1885, le chimiste autrichien, baron Carl Auer von Welsbach, sépare le didyme en deux éléments le praséodyme et le néodyme qui donnent des sels de couleurs différentes.
Dans la fin des années 1920, Leo Moser (fils de Ludwig Moser, fondateur de la cristallerie Moser à l'actuelle Karlovy Vary, en République tchèque, à ne pas confondre avec Leo Moser, mathématicien) recherche l'utilisation du praséodyme dans la coloration du verre. Il en résulte un verre jaune-vert qu'il nomme « Prasemit ». Cependant, la même couleur peut être atteinte avec des colorants coûtant une petite fraction du coût de celui à base de praséodyme. Moser a aussi mélangé le praséodyme avec du néodyme pour produire le verre « Heliolite » qui fut plus accepté. Le premier emploi commercialement important de praséodyme purifié et qui perdure aujourd'hui est la coloration de la céramique.
Par séparation classique, il est difficile de purifier le praséodyme. Beaucoup moins abondant que le lanthane et le néodyme dont il doit être séparé, le praséodyme est dispersé dans un grand nombre de fractions et le rendement de la purification est faible. Historiquement, l'offre de praséodyme a toujours dépassé la demande, c'est pourquoi il est parfois offert moins cher que le néodyme plus abondant. Inutilisé tel quel, le praséodyme a été souvent utilisé en mélange avec le lanthane et le cérium. Ce mélange est appelé LCP selon les premières lettres de ses composants ; remplaçant les mélanges traditionnels de lanthanides, il est produit à partir de la monazite ou de la bastnäsite, LCP étant ce qui reste après extraction par solvant du néodyme recherché et de toutes les terres plus lourdes, plus rares et de plus grande valeur. Cependant LC (le mélange simple de lanthane et de cérium) commence à supplanter LCP.
Origine
Le praséodyme est contenu en petites quantités dans la croûte terrestre (9,5 ppm). On le trouve dans les minerais de terres rares monazite et bastnäsite. On l'extrait de ces minerais par échange d'ions ou extraction par solvant à contre-courant.
Utilisations
- Pierre à briquet : le praséodyme entre dans la composition du mischmétal, base des pierres à briquet.
- Colorant du verre : il colore le verre en vert. En combinaison avec le néodyme, il colore les verres de protection solaire jusqu'aux lunettes de soudeur.
- Colorant pour céramiques : les pigments zircon (ZrSiO4) dopés au Pr donnent un jaune vif éclatant. Dans la fluorine (CaF2), le praséodyme donne une couleur rouge.
- Autres utilisations : dans les aimants permanents, en alliage avec le cobalt en substitution du samarium dans les phases Sm1-xPrxCo5. En additif dans les verres optiques « flint ». Comme composant de catalyseur dans l'industrie du pétrole.
- Amplificateur EDFA : une fibre optique dopée au praséodyme entre dans la composition d'un amplificateur optique de type EDFA.
- Compositions réfractaires
- Allié avec du nickel, le praséodyme a un fort effet magnétocalorique, ce qui a permis aux scientifiques de s'approcher à moins d'un millième de degré du zéro absolu.
Notes et références
- (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Praseodymium » (voir la liste des auteurs).
- 1 2 3 4 (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC Press Inc, , 90e éd., 2804 p., Relié (ISBN 978-1-420-09084-0)
- ↑ (en) Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán et Santiago Alvarez, « Covalent radii revisited », Dalton Transactions, , p. 2832 - 2838 (DOI 10.1039/b801115j)
- ↑ (en) David R. Lide, CRC Handbook of Chemistry and Physics, CRC, , 89e éd., p. 10-203
- ↑ SIGMA-ALDRICH
- ↑ (en) « Rare-Earth Metal Long Term Air Exposure Test » (consulté le )
- ↑ M. Jackson "Magnetism of Rare Earth" The IRM quarterly col. 10, No. 3, p. 1, 2000
- ↑ (en) Matthew R. MacDonald, Jefferson E. Bates, Joseph W. Ziller et Filipp Furche, « Completing the Series of +2 Ions for the Lanthanide Elements: Synthesis of Molecular Complexes of Pr2+, Gd2+, Tb2+, and Lu2+ », Journal of the American Chemical Society, vol. 135, no 26, , p. 9857–9868 (ISSN 0002-7863 et 1520-5126, DOI 10.1021/ja403753j, lire en ligne, consulté le )
- ↑ Aurélien R. Willauer, Chad T. Palumbo, Farzaneh Fadaei-Tirani et Ivica Zivkovic, « Accessing the +IV Oxidation State in Molecular Complexes of Praseodymium », Journal of the American Chemical Society, vol. 142, no 12, , p. 5538–5542 (ISSN 0002-7863 et 1520-5126, DOI 10.1021/jacs.0c01204, lire en ligne, consulté le )
- ↑ (en) Episodes from the History of the Rare Earth Elements, Springer Netherlands, coll. « Chemists and Chemistry », (ISBN 9789401066143 et 9789400902879, DOI 10.1007/978-94-009-0287-9), xxi.
Voir aussi
Liens externes
- (en) « Technical data for Praseodymium » (consulté le ), avec en sous-pages les données connues pour chaque isotope
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | ||||||||||||||||
1 | H | He | |||||||||||||||||||||||||||||||
2 | Li | Be | B | C | N | O | F | Ne | |||||||||||||||||||||||||
3 | Na | Mg | Al | Si | P | S | Cl | Ar | |||||||||||||||||||||||||
4 | K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | |||||||||||||||
5 | Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | |||||||||||||||
6 | Cs | Ba | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |
7 | Fr | Ra | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |
8 | 119 | 120 | * | ||||||||||||||||||||||||||||||
* | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 |
Métaux alcalins | Métaux alcalino-terreux | Lanthanides | Métaux de transition | Métaux pauvres | Métalloïdes | Non-métaux | Halogènes | Gaz nobles | Éléments non classés |
Actinides | |||||||||
Superactinides |